\(\frac{1}{3x4}+\frac{1}{5x6}+...+\frac{1}{2005x2006}\)

các bạn nhớ đọc...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

\(\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{2005\times2006}\)                                                                                           =\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2005}-\frac{1}{2006}\)                                                                 =\(\frac{1}{3}-\frac{1}{2006}=\frac{2003}{6018}\)

10 tháng 3 2016
lay 1/3*1/2006=1/6018

Ta có: A=1/11+1/12+1/13+...+1/30

            =(1/11+1/12+1/13+..+1/20)+(1/21+1/22+1/23+...+1/30)

\(\Rightarrow\)A<(1/10+1/10+1/10+...+1/10)+(1/20+1/20+1/20+...1/20)

\(\Rightarrow\)A<(1/10)*10+(1/20)*10

\(\Rightarrow\)A<1+1/2

\(\Rightarrow\)A<3/2<11/6

2 tháng 4 2018

cam on ban rat nhieu

28 tháng 4 2017

< 1 nhé 

28 tháng 4 2017

Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\)\(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\)\(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)

Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)

=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)

=> A < 1

18 tháng 4 2018

\(A=\frac{\left(23\frac{11}{15}-26\frac{13}{20}\right)}{12^2+5^2}\cdot\frac{1-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}}{3^2.13.2-13.5}-\frac{19}{37}\)

\(A=\frac{\left(23+\frac{11}{15}-26+\frac{13}{20}\right)}{144+25}\cdot\frac{1-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}}{9.13.2-13.5}-\frac{19}{37}\)

\(A=\frac{\left(23+26+\frac{11}{15}-\frac{13}{20}\right)}{169}\cdot\frac{1-\left(\frac{1}{5}-\frac{1}{6}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-\left(\frac{1}{7}-\frac{1}{8}\right)}{13.\left(9.2-5\right)}-\frac{19}{37}\)

\(A=\frac{49+\frac{44}{60}-\frac{39}{60}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+\frac{1}{7}-\frac{1}{7}+\frac{1}{8}}{13.13}-\frac{19}{37}\)

\(A=\frac{49+\frac{1}{20}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{8}}{169}-\frac{19}{37}\)

\(A=\frac{49\frac{1}{20}}{169}\cdot\frac{\frac{4}{5}+\frac{5}{40}}{169}-\frac{19}{37}\)

\(A=\frac{981}{169}\cdot\frac{\frac{32}{40}+\frac{5}{40}}{169}-\frac{19}{37}\)

\(A=\frac{981}{169}\cdot\frac{\frac{37}{40}}{169}-\frac{19}{37}\)

\(A=\frac{981.\frac{37}{40}}{169^2}-\frac{19}{37}\)

\(A=\frac{\frac{36297}{40}}{28561}-\frac{19}{37}\)

\(A=\frac{907,425}{28561}-\frac{19}{37}\)

\(A=\frac{33574,725}{1056757}-\frac{542659}{1056757}\)

\(A=\frac{-509084,275}{1056757}=-0,04604282...\)

Mik chỉ làm đc thế này thôi, ôn thi học kì II tốt nha bạn!

19 tháng 2 2018

mình nhầm câu b:

Áp dụng....

A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)

 =10^10+1/10^11+1=B

Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)

19 tháng 2 2018

a) Với a<b=>a+n/b+n >a/b

    Với a>b=>a+n/b+n<a/b

    Với a=b=>a+n/b+n=a/b

b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:

A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]

    =(10^10)+1/(10^11)+1=B

Vậy A=B

19 tháng 3 2018

B = \(\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{53.56}\)

B = \(\frac{6-3}{3.6}+\frac{9-6}{6.9}+...+\frac{56-53}{53.56}\)

B = \(\frac{6}{3.6}-\frac{3}{3.6}+...+\frac{56}{53.56}-\frac{53}{53.56}\)

B = \(\frac{1}{3}-\frac{1}{6}+...+\frac{1}{53}-\frac{1}{56}\)

B = \(\frac{1}{3}-\frac{1}{56}\)

B = \(\frac{53}{168}\)

19 tháng 3 2018

Ta có:

\(B=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.11}+...+\frac{3}{53.56}\)

\(=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{53}-\frac{1}{56}\)

\(=\frac{1}{3}-\frac{1}{56}=\frac{53}{168}\)

Vậy B=\(\frac{53}{168}\)

2 tháng 9 2020

\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}\)

\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}\cdot\frac{10}{39}=\frac{5}{39}\)

2 tháng 9 2020

\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{1.13}\)

\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}.\frac{10}{39}=\frac{5}{39}\)

23 tháng 2 2020

Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)

Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)