\(C=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{5\sqrt{3}+3\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

Xét: \(\frac{1}{n\sqrt{n-2}+\left(n-2\right)\sqrt{n}}=\frac{1}{\left(\sqrt{n}-\sqrt{n-2}\right)\sqrt{n\left(n-2\right)}}\)

\(=\frac{\sqrt{n}+\sqrt{n-2}}{2\sqrt{n\left(n-2\right)}}=\frac{1}{2}\left(\frac{\sqrt{n}+\sqrt{n-2}}{\sqrt{n\left(n-2\right)}}\right)\)

\(=\frac{1}{2}\left(\frac{1}{\sqrt{n-2}}-\frac{1}{\sqrt{n}}\right)\)

Từ đó ta thay vào:

\(C=\frac{1}{2}\cdot\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{199}}-\frac{1}{\sqrt{121}}\right)\)

\(C=\frac{1}{2}\cdot\left(1-\frac{1}{11}\right)\)

\(C=\frac{1}{2}\cdot\frac{10}{11}=\frac{5}{11}\)

Vậy C = 5/11

9 tháng 10 2020

Dạng tổng quát: Với n là các số lẻ lớn hơn hoặc bằng 3 thì \(\frac{1}{n\sqrt{n-2}+\left(n-2\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n-2\right)}\left(\sqrt{n}+\sqrt{n-2}\right)}=\frac{1}{\sqrt{n\left(n-2\right)}.\frac{2}{\sqrt{n}-\sqrt{n-2}}}=\frac{\sqrt{n}-\sqrt{n-2}}{2\sqrt{n\left(n-2\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n-2}}-\frac{1}{\sqrt{n}}\right)\)Áp dụng, ta được: \(C=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{5\sqrt{3}+3\sqrt{5}}+...+\frac{1}{121\sqrt{119}+119\sqrt{121}}=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{119}}-\frac{1}{\sqrt{121}}\right)=\frac{1}{2}\left(1-\frac{1}{11}\right)=\frac{5}{11}\)Vậy C = 5/11

Xét :\(\frac{1}{\left(a+2\right)\sqrt{a}+a\sqrt{a+2}}=\frac{1}{\sqrt{a}.\sqrt{a+2}\left(\sqrt{a+2}+\sqrt{a}\right)}=\frac{\sqrt{a+2}-\sqrt{a}}{2\sqrt{a}.\sqrt{a+2}}=\frac{1}{2\sqrt{a}}-\frac{1}{2\sqrt{a+2}}\)

Xét: 

\(C=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{5\sqrt{3}+3\sqrt{5}}+...+\frac{1}{121\sqrt{119}+119\sqrt{121}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{3}}-\frac{1}{2\sqrt{5}}+\frac{1}{2\sqrt{5}}-\frac{1}{2\sqrt{7}}+...+\frac{1}{2\sqrt{119}}-\frac{1}{2\sqrt{121}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{121}}=\frac{1}{2}-\frac{1}{2.11}=\frac{5}{11}\)

9 tháng 10 2020

Chứng minh với mọi số nguyên dương, ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\text{[}\left(n+1\right)\sqrt{n}\text{]}^2-\left(n\sqrt{n+1}\right)^2}\)\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\text{ }\left(n+1\right)^2.n-n^2.\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)n\left(n+1-n\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng: Tính B=....

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\left(\frac{-1}{\sqrt{120}}\right)+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}=\frac{10}{11}\)

5 tháng 10 2020

Xét \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}a>0\)

Ta có: \(A^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\)

\(\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}\)

Vì a>0, D>0  nên \(A=\frac{a^2+a+1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)

Áp dụng ta có: \(D=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)

\(=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+...+\left(1+\frac{1}{99}-\frac{1}{100}\right)=100-\frac{1}{100}=99,99\)

9 tháng 10 2020

Dạng tổng quát ta càn chứng minh \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\)

Ta có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\)

\(=\sqrt{\frac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}\)

\(=\sqrt{\left(\frac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}\)

\(=\frac{a^2+ab+b^2}{ab\left(a+b\right)}=\frac{1}{b}+\frac{b}{a\left(a+b\right)}=\frac{1}{b}+\frac{1}{a}-\frac{1}{a+b}\left(đpcm\right)\)

Áp dụng dạng trên ta được 

\(D=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{99}-\frac{1}{100}\)

\(D=100-\frac{1}{100}=\frac{9999}{100}\)

9 tháng 10 2020

Xét biểu thức \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)với a > 0

\(A^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}=\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}=\left[\frac{a^2+a+1}{a\left(a+1\right)}\right]^2\)Do a > 0 nên A > 0 và \(A=\frac{a^2+a+1}{a\left(a+1\right)}=1+\frac{1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)

Do đó \(D=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{99}-\frac{1}{100}\right)=99+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100-\frac{1}{100}=99,99\)

9 tháng 10 2020

Bài 1: Ta có: \(\sqrt{2020}-\sqrt{2019}=\frac{1}{\sqrt{2020}+\sqrt{2019}};\)\(\sqrt{2018}-\sqrt{2017}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)

Dễ thấy \(\sqrt{2020}+\sqrt{2019}>\sqrt{2018}+\sqrt{2017}\)nên \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2018}+\sqrt{2017}}\)

Suy ra\(\sqrt{2020}-\sqrt{2019}< \sqrt{2018}-\sqrt{2017}\)

Bài 2: Xét biểu thức \(\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}=\sqrt{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}=\sqrt{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1\)(Vì \(a^2+a+1>0\forall a\inℝ\))

Áp dụng công thức tổng quát trên, ta được: \(\sqrt{2019^2+2019^2.2020^2+2020^2}=2019^2+2019+1\)(là số tự nhiên) (đpcm)

30 tháng 6 2019

      ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)

Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)

          

18 tháng 10 2018

TÍNH NHA M.N  

18 tháng 10 2018

a, \(\sqrt{8}+\sqrt{18}-\sqrt{\frac{1}{2}}=2\sqrt{2}+3\sqrt{2}-\frac{1}{2}\sqrt{2}\)

\(=\frac{9}{2}\sqrt{2}\)

b, \(\frac{3-\sqrt{3}}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)

\(=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)

\(=\sqrt{3}-1+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)

\(=\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+1\right)\) \(=\frac{2\sqrt{2}-\left(\sqrt{2}+1\right)^2}{\sqrt{2}+1}\)

\(=\frac{2\sqrt{2}-2-2\sqrt{2}-1}{\sqrt{2}+1}=-\frac{2+1}{\sqrt{2}+1}\)

c,  PT xác định với mọi x nha!

\(\sqrt{x^2-2x+1}=3\) \(\Rightarrow x^2-2x+1=9\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left(x^2-4x\right)+\left(2x-8\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}}\)

Vậy...

bạn tự kl

28 tháng 7 2019

\(A=\frac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4}{x-1}\)

b) \(\frac{4}{x-1}=7\)

\(\Leftrightarrow4=7.\left(x-1\right)\)

\(\Leftrightarrow\frac{4}{7}=x-1\)

\(\Leftrightarrow\frac{4}{7}+1=x\)

\(\Leftrightarrow\frac{11}{7}=x\)

\(\Rightarrow x=\frac{11}{7}\)