K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

a) 8\(\sqrt{x}\) = \(x^2\) ( x lon hon hoac bang 0)

\(\left(8\sqrt{x}\right)^2\) = \(\left(x^2\right)^2\)

64x=\(x^4\) 

\(x^4\)_ 64x = 0

x (\(x^3\) - 64) = 0

suy ra\(\orbr{\begin{cases}x=0\\x^3-64=0\end{cases}}\) suy ra \(\orbr{\begin{cases}x=0\\x^3=64\end{cases}}\) suy ran \(\orbr{\begin{cases}x=0\\x^3=4^3\end{cases}}\) suy ra \(\orbr{\begin{cases}x=0\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vay x= 0; x=4

b) \(\sqrt{3x-2}\) = x (x lon hon hoac bang \(\frac{2}{3}\) )

\(\left(\sqrt{3x-2}\right)^2\) = \(x^2\)

3x - 2=\(x^2\)

\(x^2-3x+2=0\)

\(^{x^2}-1x-2x+2=0\)

\(\left(x^2-1x\right)-\left(2x-2\right)=0\)

\(x\left(x-1\right)-2\left(x-1\right)=0\)

(x-1)(x-2)=0

suy ra \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\) suy ra \(\orbr{\begin{cases}x=1\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)

vay \(x=1;x=2\)

3 tháng 7 2017

a, \(=\frac{x^2+x+4}{\sqrt{x^2+x+3}}\), Xét 2 trường hợp \(x\ge0\)thì \(\sqrt{x^2+x+3}\)lớn hơn 1.5 

vì \(\sqrt{3}=1.732050808>1.5\)

... Trường hợp x<0 thì \(x^2-x+3\ge3\)

=> \(\sqrt{x^2+x+3}>1.5\)

Ta xét tương tự với trường hợp \(x^2+x+4\)lớn hơn hoặc bằng 4 với 2 TH:

=> Biểu thức sẽ lớn hơn : \(\frac{4}{1,5}>2\)

b, C/m tương tự với vế trên luôn lớn hơn hoặc = 7 ;

Khi ấy biểu thức sẽ lớn hơn:

\(\frac{7}{\sqrt{3}}=4.041451884>4\)

=>ĐPCM

a: Đặt \(\sqrt{x^2+x+3}=a\)

Ta sẽ có \(\dfrac{a^2}{a}+\dfrac{1}{a}=a+\dfrac{1}{a}\ge2\cdot\sqrt{a\cdot\dfrac{1}{a}}=2\left(đpcm\right)\)

b: Đặt \(\sqrt{x^2+x+3}=b\)

Ta sẽ có \(\dfrac{b^2+4}{b}=b+\dfrac{4}{b}\ge2\cdot\sqrt{b\cdot\dfrac{4}{b}}=4\)

23 tháng 3 2020

b) \(\left|5-3x\right|< 2\)

Ta tách ra thành 2 trường hợp:

\(5-3x< 2;5-3x\ge0\)

\(-\left(5-3x\right)< 2;5-3x< 0\)

Giải 2 trường hợp và tìm x:

\(x>1;x\le\frac{5}{3}\)

\(x< \frac{7}{3};x>\frac{5}{3}\)

\(\Rightarrow x\in\text{⟨}1;\frac{7}{3}\text{⟩}\)

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

31 tháng 7 2017

Đại số lớp 7Đại số lớp 7

31 tháng 7 2017

ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho Đại số lớp 7

28 tháng 10 2021

\(\frac{\sqrt{x+2021}}{\sqrt{x+2022}}\)

\(\sqrt{x^1+}2021^1\)

\(\sqrt{x^1+2022^1}\)

\(2022^3\)\(2021^3\)

\(1^3\)

13 tháng 12 2015

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A thuộc Z

=>\(\frac{4}{\sqrt{x}-3}\in Z\)

<=>\(\sqrt{x}-3\inƯ\left(4\right)\)

=>\(\sqrt{x}-3\in\left(-2;2;-1;1;-4;4\right)\)

\(\sqrt{x}-3\)1-12-24-4
\(\sqrt{x}\)42517-1(loại)
x16425149