Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\\ = \left( {\frac{3}{4}:\frac{3}{2}} \right) - \left( {\frac{5}{6}.3} \right)\\ = \left( {\frac{3}{4}.\frac{2}{3}} \right) - \frac{5}{2}\\ = \frac{1}{2} - \frac{5}{2}\\ = \frac{-4}{2}\\= - 2.\end{array}\)
b)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{5}} \right).10 - \frac{5}{7}.\left( {\frac{{10}}{{15}} - \frac{3}{{15}}} \right)\\ = - 2 - \frac{5}{7}.\frac{7}{{15}}\\ = - 2 - \frac{1}{3}\\ = \frac{{ - 6}}{3} - \frac{1}{3}\\ = \frac{{ - 7}}{3}\end{array}\)
c)
\(\begin{array}{l}\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left[ {\left( {\frac{{ - 4}}{6}} \right) + \frac{3}{6}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left( {\frac{{ - 1}}{6}} \right)^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.\frac{1}{{36}}\\ = \left( { - \frac{2}{5}} \right) + \frac{1}{{15}}\\ = \left( { - \frac{6}{{15}}} \right) + \frac{1}{{15}}\\ = \frac{{ - 5}}{{15}}\\ = \frac{{ - 1}}{3}\end{array}\)
d)
\(\begin{array}{l}\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{1}{{25}} - \frac{3}{5}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 2}}{6}} \right) + \frac{3}{6}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{{ 1}}{{25}}-\frac{15}{25}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\left[ {{{\left( {\frac{{ - 14}}{{25}}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\frac{{196}}{{{{25}^2}}}.\frac{{25.5}}{{49}}.\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left( {\frac{{4.49.25.5.5}}{{{{25}^2}.49.6}}} \right) - \frac{1}{6}\\ = \frac{4}{6} - \frac{1}{6}\\ = \frac{3}{6}\\ = \frac{1}{2}\end{array}\)
a)
\(\begin{array}{l}\left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{5}{6} - \frac{4}{7}} \right)\\ = \left( {\frac{{ - 3}}{7}} \right) + \frac{5}{6} - \frac{4}{7}\\ = \left[ {\left( {\frac{{ - 3}}{7}} \right) - \frac{4}{7}} \right] + \frac{5}{6}\\ =\frac{-7}{7}+\frac{5}{6}\\= - 1 + \frac{5}{6}\\ = \frac{{ - 1}}{6}\end{array}\)
b)
\(\begin{array}{l}\frac{3}{5} - \left( {\frac{2}{3} + \frac{1}{5}} \right)\\ = \frac{3}{5} - \frac{2}{3} - \frac{1}{5}\\ = (\frac{3}{5} - \frac{1}{5}) - \frac{2}{3}\\ = \frac{2}{5} - \frac{2}{3}\\ = \frac{6}{{15}} - \frac{{10}}{{15}}\\ = \frac{{ - 4}}{{15}}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{3}} \right) + 1} \right] - \left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{3}} \right) + 1 - \frac{2}{3} + \frac{1}{5}\\ = \left( {\frac{{ - 1}}{3} - \frac{2}{3}} \right) + 1 + \frac{1}{5}\\ = \frac{-3}{3}+1+\frac{1}{5}\\= - 1 + 1 + \frac{1}{5}\\ = \frac{1}{5}\end{array}\)
d)
\(\begin{array}{l}1\frac{1}{3} + \left( {\frac{2}{3} - \frac{3}{4}} \right) - \left( {0,8 + 1\frac{1}{5}} \right)\\ = 1 + \frac{1}{3} + \frac{2}{3} - \frac{3}{4} - \left( {\frac{4}{5} + 1 + \frac{1}{5}} \right)\\=1+\frac{3}{3}-\frac{3}{4}-(\frac{5}{5}+1)\\ = 1 + 1 - \frac{3}{4} - (1+1)\\ = - \frac{3}{4}\end{array}\).
Bài 1:
a) Ta có: \(25\cdot\left(\frac{-1}{5}\right)^3+\frac{1}{5}-2\cdot\left(\frac{-1}{2}\right)^2-\frac{1}{2}\)
\(=25\cdot\frac{-1}{125}+\frac{1}{5}-2\cdot\frac{1}{4}-\frac{1}{2}\)
\(=-\frac{1}{5}+\frac{1}{5}-\frac{1}{2}-\frac{1}{2}\)
\(=\frac{-2}{2}=-1\)
b) Ta có: \(35\frac{1}{6}:\left(\frac{-4}{5}\right)-46\frac{1}{6}:\left(\frac{-4}{5}\right)\)
\(=\frac{211}{6}\cdot\frac{-5}{4}-\frac{277}{6}\cdot\frac{-5}{4}\)
\(=\frac{-5}{4}\cdot\left(\frac{211}{6}-\frac{277}{6}\right)\)
\(=\frac{-5}{4}\cdot\left(-11\right)=\frac{55}{4}\)
c) Ta có: \(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\frac{-7}{20}\cdot\frac{7}{3}+\frac{7}{20}\cdot\frac{7}{3}\)
\(=\frac{7}{3}\cdot\left(-\frac{7}{20}+\frac{7}{20}\right)=\frac{7}{3}\cdot0=0\)
d) Ta có: \(\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}\cdot\left(\frac{1}{36}-\frac{5}{12}\right)\)
\(=\frac{7}{8}\cdot6+\frac{7}{8}\cdot\frac{-7}{18}\)
\(=\frac{7}{8}\cdot\left(6+\frac{-7}{18}\right)\)
\(=\frac{7}{8}\cdot\frac{101}{18}=\frac{707}{144}\)
e) Ta có: \(\frac{1}{6}+\frac{5}{6}\cdot\frac{3}{2}-\frac{3}{2}+1\)
\(=\frac{1}{6}+\frac{15}{12}-\frac{3}{2}+1\)
\(=\frac{2}{12}+\frac{15}{12}-\frac{18}{12}+\frac{12}{12}\)
\(=\frac{11}{12}\)
f) Ta có: \(\left(-0,75-\frac{1}{4}\right):\left(-5\right)+\frac{1}{15}-\left(-\frac{1}{5}\right):\left(-3\right)\)
\(=\left(-1\right):\left(-5\right)+\frac{1}{15}-\frac{1}{15}\)
\(=\frac{1}{5}\)
a, \(\frac{169}{196}\)
b, \(\frac{1}{144}\)
c, \(\frac{1}{100}\)
d, \(\frac{-2560}{3}\)
a) \(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{6}{14}+\frac{7}{14}\right)^2=\left(\frac{13}{14}\right)^2=\frac{169}{196}\)
b) \(\left(\frac{3}{4}-\frac{5}{6}\right)^2=\left(\frac{9}{12}-\frac{10}{12}\right)^2=\left(-\frac{1}{2}\right)^2=\frac{1}{4}\)
d) \(\left(-\frac{10}{3}\right)^5.\left(-\frac{6}{5}\right)^4=-\frac{2560}{3}\)
e) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2=\frac{17}{12}.\left(\frac{1}{20}\right)^2=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
f) \(2:\left(\frac{1}{2}-\frac{2}{3}\right)^3=2:\left(-\frac{1}{6}\right)^3=2:-\frac{1}{216}=-432\)
Camon.!!