K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

a) Đặt \(A=\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}\)

\(\Rightarrow A=\left(1^2+2^2+..........+100^2\right)\)\(.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+.....+100^2\right).\left(\frac{100}{101}\right)\)(a)

Đặt \(M=\left(1^2+2^2+........+100^2\right)\)

\(\Rightarrow M=1.1+2.2+.....+100.100\)

\(\Rightarrow M=1.\left(2-1\right)+2.\left(3-1\right)+....+100.\left(101-1\right)\)

\(\Rightarrow M=\left(1.2-1\right)+\left(2.3-2\right)+.....+\left(100.101-100\right)\)

\(\Rightarrow M=\left(1.2+2.3+.....+100.101\right)-\left(1+2+......+100\right)\)

\(\Rightarrow M=\left(1.2+2.3+......+100.101\right)-5050\)(1)

Đặt \(N=1.2+2.3+....+100.101\)

\(\Rightarrow3.N=1.2.3+2.3.3+......+100.101.3\)

\(\Rightarrow3N=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+100.101.\left(102-99\right)\)

\(\Rightarrow3N=\left(1.2.3-0\right)+\left(1.2.3-2.3.4\right)+.......+\left(100.101.102-100.101.99\right)\)

\(\Rightarrow3N=100.101.102-0\)

\(\Rightarrow N=343400\)

Thay N = 343400 vào 1) ta được:

M = 343400 - 5050 

=> M = 338350

Thay M = 338350 Vào (a) ta được:

A = 338350 . \(\frac{100}{101}\)

=> \(A=\frac{33835000}{101}\)

Vậy \(\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}=\frac{33835000}{101}=335000\)

b) Đặt \(B=\frac{2^2}{1.3}+\frac{3^2}{2.4}+..........+\frac{59^2}{58.60}\)

\(\Rightarrow B=\left(2^2+3^2+........+59^2\right).\left(\frac{1}{1.3}+\frac{1}{2.4}+.....+\frac{1}{58.60}\right)\)

Đặt \(G=2^2+3^2+.........+59^2\)VÀ \(H=\frac{1}{1.3}+\frac{1}{2.4}+.........+\frac{1}{58.60}\)

\(\Rightarrow G=2.2+3.3+.......+59.59\) VÀ \(2.H=\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{58.60}\)

Rồi bạn làm như ở phần a) ý

21 tháng 5 2017

B = \(\frac{3^2}{2.4}+\frac{3^2}{4.6}+\frac{3^2}{6.8}+...+\frac{3^2}{198.200}\)

B = \(\frac{3^2}{2}.\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{3^2}{2}.\left(\frac{1}{4}-\frac{1}{6}\right)+\frac{3^2}{2}.\left(\frac{1}{6}-\frac{1}{8}\right)+...+\frac{3^2}{2}.\left(\frac{1}{198}-\frac{1}{200}\right)\)

B = \(\frac{3^2}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{198}-\frac{1}{200}\right)\)

B = \(\frac{9}{2}.\left(\frac{1}{2}-\frac{1}{200}\right)\)

B = \(\frac{9}{2}.\frac{99}{200}\)

B = \(\frac{891}{400}\)

D = 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + ... + 48 x 49

3D = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + 4 x 5 x 3 + ... + 48 x 49 x 3

3D = 1 x 2 x 3 + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + 4 x 5 x ( 6 - 3 ) + ... + 48 x 49 x ( 50 - 47 )

3D = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + 4 x 5 x 6 - 3 x 4 x 5 + ... + 48 x 49 x 50 - 47 x 48 x 49

3D = 48 x 49 x 50

D = ( 48 x 49 x 50 ) : 3

D = 39200

E = 12 + 22 + 32 + ... + 482

E = 1 x 1 + 2 x 2 + 3 x 3 + ... + 48 x 48

E = 1 x ( 2 - 1 ) + 2 x ( 3 - 1 ) + 3 x ( 4 - 1 ) + ... + 48 x ( 49 - 1 )

E = 1 x 2 - 1 + 2 x 3 - 2 + 3 x 4 - 3 + ... + 48 x 49 - 49

E = ( 1 x 2 + 2 x 3 + 3 x 4 + ... + 48 x 49 ) - ( 1 + 2 + 3 + ... + 49 )

Ta tính được vế trong ngoặc thứ nhất là 39200 , còn vế trong ngoặc thứ hai là 1225

thay vào ta được :

E = 39200 - 1225

E = 37975 

21 tháng 5 2017

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{100}}\)

3 tháng 7 2019

\(17.8+51.4=34.4+51.4=4\left(51+34\right)=4.84=336\) \(2.2.3.5.19=\left(2.5\right).\left(3.19\right).2=10.2.57=570.2=1140\) \(54.275+825.15+275=54.275+45.275+275=275\left(54+45+1\right)=100.275=27500\) \(\frac{167.198+98}{198.168-100}=\frac{167.198+98}{198.167+198-100}=\frac{167.198+98}{167.198+98}=1\)

\(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{2020}=1-\frac{1}{2020}=\frac{2019}{2020}\)

3 tháng 7 2019

a) 17 x 8 + 51 x 4

= 17 x 4 x 2 + 17 x 3 x 4

= 17 x 4 x ( 2 + 3 )

= 14 x 4 x 5

= 14 x 20

= 280

b) 2 x 2 x 3 x 5 x 19

= ( 2 x 5 ) x ( 3 x 19 ) x 2

= 10 x 57 x 2

= 570 x 2

= 1140

c) 54 x 275 + 825 x 15 + 275

= 54 x 275 + 275 x 3 x 15 + 275 x 1

= 54 x 275 + 275 x 45 + 275 x 1

= 275 x ( 54 + 45 + 1 )

= 275 x 100

= 27500

d) 100 - 99 + 98 - 97 + 96 - 95 + 94 - 93 + ... + 4 - 3 + 2

= (100 - 99) + (98 - 97) + (96 - 95) + (94 - 93) + ... + (4 - 3) + 2

= (1 + 1 + ... + 1) + 2

( 49 số 1 )

= 49 + 2

= 51

k) 1,5 + 2,5 + 3,5 + 4,5 + 5,5 + 6,5 + 7,5 + 8,5

= ( 1,5 + 8,5 ) + ( 2,5 + 7,5 ) + ( 3,5 + 6,5 ) + ( 4,5 + 5,5 )

= 10 + 10 + 10 + 10

= 40

27 tháng 7 2019

Vãi cả nhân :V

\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+\frac{2}{5\cdot6}\\ =2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\right)\\ =2\left(\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+\frac{5-4}{4\cdot5}+\frac{6-5}{5\cdot6}\right)\\ =2\left(\frac{2}{1\cdot2}-\frac{1}{1\cdot2}+\frac{3}{2\cdot3}-\frac{2}{2\cdot3}+\frac{4}{3\cdot4}-\frac{3}{3\cdot4}+\frac{5}{4\cdot5}-\frac{4}{4\cdot5}+\frac{6}{5\cdot6}-\frac{5}{5\cdot6}\right)\\ =2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{6}\right)\\ =2\left(1-\frac{1}{6}\right)\\ =2\cdot\frac{5}{6}=\frac{10}{6}\)

Chúc bạn học tốt nhaok.

27 tháng 7 2019

Ng ta năm nay mới lên lớp 6, dùng x là đúng r, ngày trc chúng mik cx vậy mà.

4 tháng 7 2018

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{57.59}\)

\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.........-\frac{1}{59}\)

\(B=1-\frac{1}{59}\)

\(B=\frac{59}{59}-\frac{1}{59}=\frac{58}{59}\)

Vậy B = \(\frac{58}{59}\)

Lưu ý: Dấu "." là dấu nhân

4 tháng 7 2018

\(B=\frac{2}{1.3}+\frac{1}{3.5}+\frac{2}{5.7}+...+\frac{1}{57.59}\)

\(B=1.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{57}-\frac{5}{59}\right)\)

\(B=1.\left(1-\frac{1}{59}\right)\)

\(B=1.\frac{58}{59}\)

\(B=\frac{58}{59}\)

10 tháng 4 2018

ngày mai mik làm đc ko

10 tháng 4 2018

ok ai giải được giúp mik nha chiều mai mik phải nộp rồi

25 tháng 7 2018

Câu a

\(S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{2019-2017}{2017x2019}.\)

\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}=1-\frac{1}{2019}=\frac{2018}{2019}\)

Câu b

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^6}+\frac{1}{3^7}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)

\(2A=3A-A=1-\frac{1}{3^7}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^7}\)

28 tháng 7 2015

a) Ta có: \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}=1\text{-}\frac{1}{3}+\frac{1}{3}\text{-}\frac{1}{5}+...+\frac{1}{11}\text{-}\frac{1}{13}=1\text{-}\frac{1}{13}=\frac{12}{13}\)

Thay vào ta có:

\(\frac{12}{13}+x=\frac{24}{13}\Rightarrow x=\frac{24}{13}\text{-}\frac{12}{13}\Rightarrow x=\frac{12}{13}\)