Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1.\left(2-1\right)+2.\left(3-1\right)+...+100.\left(101-1\right)\)
\(=1.2-1.1+2.3-1.2+...+100.101-1.100\)
\(=\left(1.2+2.3+...+100.101\right)+\left(1+2+...+100\right)\)
Áp dụng 1.2 + 2.3 + ... + n(n + 1) = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\) ta có
\(S=\frac{100.101.102}{3}+\frac{100.101}{2}=343400+5050=\)348450
\(\frac{-2}{3}\) . (\(\frac{5}{17}\) - \(\frac{3}{5}\)) - \(\frac{2}{5}\) . (\(\frac{2}{17}\) + \(\frac{-2}{5}\) )
\(A=2-\left(\frac{2^3}{25}+\frac{2^3}{63}+...+\frac{2^3}{255}+\frac{2^3}{323}\right)\)
\(=2-4.\left(\frac{2}{35}+\frac{2}{63}+...+\frac{2}{255}+\frac{2}{323}\right)\)
\(=2-4.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{15.17}+\frac{2}{17.19}\right)\)
\(=2-4.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}\right)\)
\(=2-4.\left(\frac{1}{5}-\frac{1}{19}\right)\)
\(=2-4.\frac{14}{95}=2-\frac{56}{95}=\frac{134}{95}\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
Ta có :
\(A=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)
\(=>A=\frac{9}{2\cdot5}+\frac{9}{5\cdot8}+\frac{9}{8\cdot11}+...+\frac{9}{17\cdot20}\)
\(=>A=\frac{9}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{17\cdot20}\right)\)
\(=>A=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(=>A=3\left(\frac{1}{2}-\frac{1}{20}\right)=3\left(\frac{10}{20}-\frac{1}{20}\right)=3\cdot\frac{9}{20}=\frac{27}{20}\)
Chúc bạn học tốt!
Chọn mình nhé !
Ta có:
\(A=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)
\(\Rightarrow A=3\left(\frac{3}{10}+\frac{3}{40}+\frac{3}{88}+...+\frac{3}{340}\right)\)
\(\Leftrightarrow A=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)
\(\Leftrightarrow A=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(\Leftrightarrow A=3\left(\frac{1}{2}-\frac{1}{20}\right)=3.\frac{9}{20}=\frac{27}{20}\)
Vậy \(A=\frac{27}{20}\)
\(B=3.\left(\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{197\cdot200}\right)=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{200}\right)=3\left(\frac{25}{200}-\frac{1}{200}\right)=3\cdot\frac{24}{200}=\frac{72}{200}=\frac{9}{25}\)