Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A(x)=0
=>9x=-13
=>x=-13/9
b: x^2-49=0
=>x^2=49
=>x=7 hoặc x=-7
c: x^2-7=0
=>x^2=7
=>x=căn 7 hoặc x=-căn 7
d: 2x^2-32=0
=>x^2-16=0
=>x^2=16
=>x=4 hoặc x=-4
e: 3x^2-5=0
=>3x^2=5
=>x^2=5/3
=>\(x=\pm\sqrt{\dfrac{5}{3}}\)
g: x^2+6x=0
=>x(x+6)=0
=>x=0 hoặc x=-6
m: M(x)=0
=>5x(x-2)=0
=>x=0 hoặc x=2
n: x^3-9x=0
=>x(x^2-9)=0
=>x(x-3)(x+3)=0
=>x=0;x=3;x=-3
a) \((3{x^6}):(0,5{x^4}) = (3:0,5).({x^6}:{x^4}) = 6.{x^{6 - 4}} = 6{x^2}\);
b) \(( - 12{x^{m + 2}}):(4{x^{n + 2}}) = ( - 12:4).({x^{m + 2}}:{x^{n + 2}}) = - 3.{x^{m + 2 - n - 2}} = - 3.{x^{m - n}}\)(m, n \(\in\) N, m ≥ n).
a) \(5^n.25=125^2\)
\(\Rightarrow5^n.5^2=\left(5^3\right)^2\)
\(\Rightarrow5^n.5^2=5^6\)
\(\Rightarrow5^n=5^6:5^2\)
\(\Rightarrow5^n=5^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
b) \(3^n.9^2=27^3\)
\(\Rightarrow3^n.\left(3^2\right)^2=\left(3^3\right)^3\)
\(\Rightarrow3^n.3^4=3^9\)
\(\Rightarrow3^n=3^9:3^4\)
\(\Rightarrow3^n=3^5\)
\(\Rightarrow n=5\)
Vậy \(n=5.\)
c) \(2^4.4^n=8^6\)
\(\Rightarrow\left(2^2\right)^2.4^n=2^{18}\)
\(\Rightarrow4^2.4^n=\left(2^2\right)^9\)
\(\Rightarrow4^2.4^n=4^9\)
\(\Rightarrow4^n=4^9:4^2\)
\(\Rightarrow4^n=4^7\)
\(\Rightarrow n=7\)
Vậy \(n=7.\)
Chúc bạn học tốt!
ta có \(\left(3x-2\right)^{2k}\ge0\);\(\left(y-\frac{1}{4}\right)^{2k}\ge0\)với mọi x,y,k
Dấu '=' xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(3x-2\right)^{2k}=0\\\left(y-\frac{1}{4}\right)^{2k}=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2=0\\y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{1}{4}\end{cases}}}\)
Vì (3x-2)^2k = [(3x-2)^k]^2 >=0 và (y-1/4)^2k = [(y-1/4)^k]^2 >=0
=> VT >=0
Dấu "=" xảy ra <=> 3x-2=0 và y-1/4=0 <=> x=2/3 và y=1/4
Vậy x=2/3;y=1/4
k mk nha