Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=1\cdot2+2\cdot3+...+98\cdot99\\ 3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+98\cdot99\cdot3\\ 3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\left(5-2\right)+...+98\cdot99\left(100-97\right)\\ 3A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+3\cdot4\cdot5-...-97\cdot98\cdot99+98\cdot99\cdot100\\ 3A=98\cdot99\cdot100=970200\\ A=323400\)
\(b,B=1^2+2^2+3^3+...+98^2\\ B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+98\left(99-1\right)\\ B=\left(1\cdot2+2\cdot3+3\cdot4+...+98\cdot99\right)-\left(1+2+...+98\right)\\ B=323400-\left[\left(98+1\right)\left(98-1+1\right):2\right]\\ B=323400-4851=318549\\ c,C=1\cdot99+2\left(99-1\right)+3\left(99-2\right)+...+98\left(99-97\right)+99\left(99-98\right)\\ C=1\cdot99+2\cdot99-1\cdot2+3\cdot99-2\cdot3+...+98\cdot99-97\cdot98+99\cdot99-98\cdot99\\ C=99\left(1+2+...+99\right)-\left(1\cdot2+2\cdot3+...+98\cdot99\right)\\ C=99\left[\left(99+1\right)\left(99-1+1\right):2\right]-323400\\ C=490050-323400=166650\)
https://hoc24.vn/cau-hoi/a-tinh-tong-a1223349899b-su-dung-ket-qua-cau-a-tinh-b122232972982c-su-dung-ket-qua-cau-a-tinh-c1992983979829.2030286199021
:vv hỏi hoài z?
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
Ta có:3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+....+n\left(n+1\right).3\)
\(\Leftrightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(\Leftrightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(\Leftrightarrow3A=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
=> Ta thấy rằng mỗi số hạng trong dãu số trên đều là tích của hai số tự nhiên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
Tương tự:
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4 ....
a(n - 1) = (n - 1).n → 3a(n - 1) = 3(n - 1)n → 3a(n - 1) = (n - 1).n.(n + 1) - (n - 2).(n - 1).n
an = n.(n - 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng vế với vế của các đẳng thức trên ta được:
3(a1 + a2 + a3 +...+ an) = n(n + 1)(n + 2)
-> A = n.(n+1) .( n+2) / 3
làm tương tự như trên nhé hoàng và sau đó:
= \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
k cho tớ nhé
đặt A =1.2+2.3+3.4+...........+n.(n+1)
3.A=1.2.3+2.3.(4-1)+.........................+n.(n+1).(n+2-(n-1))
=1.2.3+2.3.4-1.2.3+.......................+n.(n+1).(n+2)-(n-1).n.(n+1)
=1.2.3-n.(n+1).(n+2)
A=6-n.(n+1).(n+2)/3=2-n.(n+1).(n+2)/3
1.2+2.3+3.4.....+n.(n+1)=A
ta có
3.A=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ n.(n+1) . ((n+2) - (n-1))
3.A=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1)+ n. (n+1). (n+2) -
0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)n(n+1)
3A=n.(n+1).(n+2)
A=n.(n+1).(n+2)/3
Cách 1:
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
Cách 2: Ta có
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)