K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

\(\frac{1}{2}S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{101}}\)

=> \(\frac{1}{2}S-S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}+\frac{1}{2^{101}}-\frac{1}{2^{100}}-...-\frac{1}{2}-1\)

<=> \(\frac{-1}{2}S=\frac{1}{2^{101}}-1\)

<=> \(S=2-\frac{1}{2^{100}}\)

26 tháng 2 2020

Ta có : 

S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\left(1\right)\)

\(\Rightarrow2S=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\left(2\right)\)

Lấy (2) - (1) ta được :

\(S=2-\frac{1}{2^{100}}=\frac{2^{101}-1}{2^{100}}\)

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{100}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}...+\frac{1}{99}\)

\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow2S-S=S=2-\frac{1}{2^{100}}=\frac{2^{101}}{2^{100}}-\frac{1}{2^{100}}=\frac{2^{101}-1}{2^{100}}\)

Ta có:

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2S-S=2-\frac{1}{2^{100}}\)

\(\Rightarrow S=2-\frac{1}{2^{100}}\)

26 tháng 2 2020

Cảm ơn bn 'Trên con đường thành công không có dấu chân của kẻ thất bại' ạ !!

3 tháng 5 2018

Câu a) Mik chữa lại một chút 

Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)\(\frac{1}{3^2}< \frac{1}{2\cdot3}\);.......; \(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

Suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

Suy ra: \(VT< \frac{1}{1}-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy : \(VT+1< 1+1=2\)

16 tháng 3 2017

1 : 29 x ( 19 -13 ) - 19 x ( 29 - 13 )

= 29 x 6 - 19 x 16

= 174 - 304

=  - 130

2 : 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

1 - \(\frac{1}{100}\)

\(\frac{99}{100}\)

20 tháng 1 2019

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^{3.}}+.............+\frac{1}{2^{100}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+.................+\frac{1}{2^{99}}\)

\(2B-B=1-\frac{1}{2^{100}}\)

\(B=1-\frac{1}{2^{100}}\)

\( C=\frac{1}{2}-\frac{1}{2^2}+.................+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(2 C=1-\frac{1}{2}+......................+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(2 C+C=1-\frac{1}{2^{100}}\)

\(C=\left(1-\frac{1}{2^{100}}\right):3\)

7 tháng 8 2015

S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

2S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

2S - S = \(1-\frac{1}{2^{100}}\)

=> S = \(1-\frac{1}{2^{100}}\)

7 tháng 8 2015

bài này làm theo công thức bạn nhé

3 tháng 7 2017

Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)

\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)

\(\Rightarrow6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

28 tháng 2 2018

\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)

\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)

\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)

2.

\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)

\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)

3.

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

4.

\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)

\(=\frac{1}{2}\)

28 tháng 2 2018

mình chỉ làm được câu 3 thôi

có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)

\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)

\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)

\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)

\(=\frac{-1}{100}\)

30 tháng 4 2019

Bài 1 :

\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\cdot\frac{24}{50}=1\)

\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)

                            #Louis

30 tháng 4 2019

\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)

\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}x=1\)

Đến đây dễ rồi :)))

Bn tự tính típ nha