K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2S-S=2-\frac{1}{2^{100}}\)

\(\Rightarrow S=2-\frac{1}{2^{100}}\)

26 tháng 2 2020

Cảm ơn bn 'Trên con đường thành công không có dấu chân của kẻ thất bại' ạ !!

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{100}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}...+\frac{1}{99}\)

\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow2S-S=S=2-\frac{1}{2^{100}}=\frac{2^{101}}{2^{100}}-\frac{1}{2^{100}}=\frac{2^{101}-1}{2^{100}}\)

3 tháng 9 2018

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{2}{5}\)

3 tháng 9 2018

nhưng tại sao lại >1/2*3+1/3*4+1/4*5+...+1/9*10

4 tháng 5 2016

= 1/2 . 2/3 .... 2014/2015 . 2015/2016

= 1/2016

4 tháng 5 2016

1/2016

16 tháng 3 2018

Đăng từ bài thôi bạn à!

a) Áp dụng công thức: \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3}-\frac{1}{4}\)

..............................

\(\frac{1}{n^2}< \frac{1}{n-1}-\frac{1}{n}\)

___________________________________________

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}=\frac{1}{n+1}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\) (đpcm)

26 tháng 2 2020

\(\frac{1}{2}S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{101}}\)

=> \(\frac{1}{2}S-S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}+\frac{1}{2^{101}}-\frac{1}{2^{100}}-...-\frac{1}{2}-1\)

<=> \(\frac{-1}{2}S=\frac{1}{2^{101}}-1\)

<=> \(S=2-\frac{1}{2^{100}}\)

26 tháng 2 2020

Ta có : 

S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\left(1\right)\)

\(\Rightarrow2S=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\left(2\right)\)

Lấy (2) - (1) ta được :

\(S=2-\frac{1}{2^{100}}=\frac{2^{101}-1}{2^{100}}\)

13 tháng 6 2016

P=1/1.2.3.4 +1/2.3.4.5 +1/3.4.5.6 +...+1/97.98.99.100 

3P=3/1.2.3.4 +3/2.3.4.5 +3/3.4.5.6 +...+3/97.98.99.100

3P=1/1.2.3-1/2.3.4+1/2.3.4-1/3.4.5+................+1/97.98.99-1/98.99.100

3P = 1/1.2.3 - 1/98.99.100

3P =( 98.99.100-1.2.3)/1.2.3.98.99.100

P=( 98.99.100-1.2.3)/1.2.3.98.99.100.3

P=(98.33.50-1)/98.99.100.3

P= 161699/2910600

13 tháng 6 2016

=398759

11 tháng 4 2016

185/741

11 tháng 4 2016

Lời giải nữa nha các bn

\(\left(1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{38}-\frac{1}{38}+\frac{1}{39}\right)\)

= 1 + \(1+\frac{1}{39}=\frac{40}{39}\)

chỗ " 1 + " phía trước là bỏ

ngay chỗ dấu bằng thứ hai