K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2023

`M+N= 0,5x^4 -4x^3 +2x-2,5 + 2x^3 +x^2+1,5`

`= 0,5x^4 +(-4x^3+ 2x^3 ) +x^2+2x +(-2,5 +1,5)`

`= 0,5x^4 -2x^3 +x^2+2x -1`

28 tháng 3 2023

\(M+N=0,5x^4-4x^3+2x-2,5+2x^3+x^2+1,5\)

\(=0,5x^4-4x^3+2x^3+x^2+2x-2,5+1,5\)

\(=0,5x^4-2x^3+x^2+2x-1\)

18 tháng 5 2017

\(M\left(x\right)+N\left(x\right)\)

\(=5x^3-x^2-4+2x^4-2x^2+2x+1\)

\(=2x^4+5x^3-3x^2+2x-3\)

\(M\left(x\right)-N\left(x\right)\)

\(=5x^3-x^2-4-\left(2x^4-2x^2+2x+1\right)\)

\(=5x^3-x^2-4-2x^4+2x^2-2x-1\)

\(=-2x^4+5x^3+x^2-2x-5\)

\(M\left(x\right)+P\left(x\right)=N\left(x\right)\)

\(\Rightarrow P\left(x\right)=N\left(x\right)-M\left(x\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-\left(5x^3-x^2-4\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-5x^3+x^2+4\)

\(\Rightarrow P\left(x\right)=2x^4-5x^3-x^2+2x+5\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

a)

$M(x)=(x^5+5x^5)-2x^4-4x^3+3x$

$=6x^5-2x^4-4x^3+3x$

$N(x)=-6x^5+(7x^4-5x^4)+(x^3+3x^3)+4x^2-3x-1$

$=-6x^5+2x^4+4x^3+4x^2-3x-1$

b)

$M(-1)=6(-1)^5-2(-1)^4-4(-1)^3+3(-1)=-7$

$N(-2)=-6(-2)^5+2(-2)^4+4(-2)^3+4(-2)^2-3(-2)-1$

$=213$

c)

$M(x)+N(x)=(6x^5-2x^4-4x^3+3x)+(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=4x^2-1$

$M(x)-N(x)=(6x^5-2x^4-4x^3+3x)-(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=12x^5-4x^4-8x^3-4x^2+6x+1$

d)

$F(x)=M(x)+N(x)=4x^2-1=0\Leftrightarrow x^2=\frac{1}{4}$

$\Leftrightarrow x=\pm \frac{1}{2}$

Vậy $x=\pm \frac{1}{2}$ là nghiệm của $F(x)$

10 tháng 1 2023

\(Câu\text{ }4:\\ Ta\text{ }có:\text{(x^2 – 3x + 2) + (4x^3– x^2+ x – 1)}\\ =x^2-3x+2+4x^3-x^2+x-1\\ =\text{4x}^3+\left(x^2-x^2\right)+\left(-3x+x\right)+\left(2-1\right)\\ =4x^3-2x+1\)

\(Câu\text{ }5:Đặt\text{ }tính\text{ }trừ\text{ }như\text{ }sau:\)

-x^3 -5x + 2 _ 3x + 8 x^3 -8x - 6

16 tháng 6 2020

\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)

Hệ số 3/5

\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)

Hệ số 4

Làm nốt b Quỳnh đag lm dở.

Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)

\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)

\(P\left(x\right)=x^2-2\)

Ta có : \(P\left(x\right)=x^2-2=0\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

1 tháng 5 2018

bạn ơi các biểu thức trên 

hình như điều ko có số mũ hay gì

1 tháng 5 2018

có đó bạn

do mình ghi như thế

4 tháng 8 2020

Cảm mơn nha hihi

4 tháng 8 2020

a/ \(M=\left(-2x^4+x^2+5\right)-\left(5x^2-x^3+4x\right)\)

\(=-2x^4+x^2+5-5x^2+x^3-4x\)

\(=-2x^4+x^3-4x^2-4x+5\)

Vậy...

b/ \(M=-2x^4+x^2+5+5x^2-x^3+4x\)

\(=-2x^4-x^4+6x^2+4x+5\)

Vậy...

c/ \(M=\left(5x^2-x^3+4x\right)-\left(-2x^4+x^2+5\right)\)

\(=5x^2-x^3+4x+2x^4-x^2-5\)

\(=2x^4-x^3+4x^2-5\)

Vậy...

d/ \(M=-\left(5x^2-x^3+4x\right)\)

\(=x^4-5x^2-4x\)

Vậy..

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)