K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
H
0
HJ
0
DH
1
DH
1
PT
0
NV
1
TH
1
TV
1
MV
10 tháng 8 2017
996 k làm được
Ta thấy:
\(\sqrt{A}=99\left(2\text{ số }9\right)\\ A=9801\left(2-1\text{ số }9\text{ và }0\right)\\ \sqrt{A}=999\left(3\text{ số }9\right)\\ A=998001\left(3-1\text{ số }9\text{ và }0\right)\\ \sqrt{A}=9999\left(4\text{ số }9\right)\\ A=99980001\left(4-1\text{ số }9\text{ và }0\right)\\ ...\)
Vậy
\(\sqrt{A}=999...999\left(100\text{ số }9\right)\\ \Rightarrow A^2=999...98000...01\left(99\text{ số }9\text{ và }0\right)\)
Tổng các chữ số của \(A\) là: \(99\cdot9+8+99\cdot0+1=99\cdot\left(9+0\right)+\left(8+1\right)=99\cdot9+9=9\cdot\left(99+1\right)=9\cdot100=900\)
\(A=\left(99...96\right)^2\)
\(=\left(99...990+6\right)^2\) (100 chữ số 9)
Có \(10^{100}-1=99....99\) (100 chữ số 9)
\(\Rightarrow10^{101}-10=99...990\) ( 100 chữ số 9)
\(\Rightarrow A=\left(10^{101}-10+6\right)^2\)
\(=\left(10^{101}-4\right)^2\)\(=10^{202}-8.10^{101}+16\)
Có \(10^{202}=10.....00\) (202 chữ số 0) có tổng các chữ số là 1
\(8.10^{101}=800...00\) (101 chữ số 0) có tổng các chữ số là 8
\(16\) có tổng các chữ số là 7
\(\Rightarrow\) Tổng các chữ số của A là \(1+8+7=16\)