Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+..\left(-7\right)^{2007}\)
\(\Rightarrow-7A=\left(-7\right)^2+\left(-7\right)^3+..+\left(-7\right)^{2008}\)
Lấy hiệu hai đẳng thức ta có
\(8A=\left(-7\right)-\left(-7\right)^{2008}\Rightarrow A=-\frac{7+7^{2008}}{8}\)
còn A không chia hết cho 43 nhé
a giải luôn cho e nhé
7A=7+72+73+...+72008
7A-A=[7+72+73+...+72008]-[1+7+72+..+72007]
6A=72008-1
A=72008-1/6
b,Tương tư nhân B vs 4 là ra
Mình chỉ trả lời được 2 câu đầu thôi nhé:
a.A= \(1+7+7^2+7^3+...+7^{2007}\)
A.7 = \(7+7^2+7^3+7^4+...+7^{2008}\)
A7-A = \(\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
A6 =\(7^{2008}-1\)
\(\Rightarrow A=7^{2008}-1\)
Câu còn lại làm tương tự bạn nhé
a. => 7A=7.(7+72+73+...+72016)
7A=72+73+74+...+72017
=> 7A-A=(72+73+74+...+72017)-(7+72+73+...+72016)
=> 6A=72017-7
=> A=\(\frac{7^{2017}-7}{6}\).
b. A=(7+72)+(73+74)+...+(72015+72016)
=7.(1+7)+73.(1+7)+...+72015.(1+7)
=7.8+73.8+...+72015.8
=8.(7+73+...+72015) chia hết cho 8
=> A chia hết cho 8.
c. A=(7+72+73)+(74+75+76)+...+(72014+72015+72016)
=7.(1+7+72)+74.(1+7+72)+...+72014.(1+7+72)
=7.57+74.57+...+72014.57
=57.(7+74+...+72014) chia hết cho 57
=> A chia hết cho 57.
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$