K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 3 2022

\(\Leftrightarrow n\left(a_{n+2}-a_{n+1}\right)=\left(n+1\right)\left(a_{n+1}-a_n\right)+3n\left(n+1\right)\)

\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=\dfrac{a_{n+1}-a_n}{n}+3\)

Đặt \(\dfrac{a_{n+1}-a_n}{n}=b_n\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=-6\\b_{n+1}=b_n+3\end{matrix}\right.\)

\(\Rightarrow b_n\) là cấp số cộng với công sai 3

\(\Rightarrow b_n=b_1+\left(n-1\right)d=-6+3\left(n-1\right)=3n-9\)

\(\Rightarrow a_{n+1}-a_n=n\left(3n-9\right)=3n^2-9n\)

\(\Rightarrow a_{n+1}-\left(n+1\right)^3+6\left(n+1\right)^2-5\left(n+1\right)=a_n-n^3+6n^2-5n\)

Đặt \(a_n-n^3+6n^2-5n=c_n\Rightarrow\left\{{}\begin{matrix}c_1=6-1+6-5=6\\c_{n+1}=c_n=...=c_1=6\end{matrix}\right.\)

\(\Rightarrow a_n=n^3-6n^2+5n+6\)

NV
8 tháng 3 2021

a.

\(\Leftrightarrow na_{n+2}-na_{n+1}=2\left(n+1\right)a_{n+1}-2\left(n+1\right)a_n\)

\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=2.\dfrac{a_{n+1}-a_n}{n}\)

Đặt \(b_n=\dfrac{a_{n+1}-a_n}{n}\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=1\\b_{n+1}=2b_n\end{matrix}\right.\) \(\Rightarrow b_n=2^{n-1}\Rightarrow a_{n+1}-a_n=n.2^{n-1}\)

\(\Leftrightarrow a_{n+1}-\left[\dfrac{1}{2}\left(n+1\right)-1\right]2^{n+1}=a_n-\left[\dfrac{1}{2}n-1\right]2^n\)

Đặt \(c_n=a_n-\left[\dfrac{1}{2}n-1\right]2^n\Rightarrow\left\{{}\begin{matrix}c_1=a_1-\left[\dfrac{1}{2}-1\right]2^1=2\\c_{n+1}=c_n=...=c_1=2\end{matrix}\right.\)

\(\Rightarrow a_n=\left[\dfrac{1}{2}n-1\right]2^n+2=\left(n-2\right)2^{n-1}+2\)

NV
8 tháng 3 2021

b.

Câu b này đề sai

Với \(n=1\Rightarrow\sqrt{a_1-1}=0< \dfrac{1\left(1+1\right)}{2}\)

Với \(n=2\Rightarrow\sqrt{a_1-1}+\sqrt{a_2-1}=0+1< \dfrac{2\left(2+1\right)}{2}\)

Có lẽ đề đúng phải là: \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\dfrac{n\left(n-1\right)}{2}\)

Ta sẽ chứng minh: \(\sqrt{a_n-1}\ge n-1\) ; \(\forall n\in Z^+\)

Hay: \(\sqrt{\left(n-2\right)2^{n-1}+1}\ge n-1\)

\(\Leftrightarrow\left(n-2\right)2^{n-1}+2n\ge n^2\)

- Với \(n=1\Rightarrow-1+2\ge1^2\) (đúng)

- Với \(n=2\Rightarrow0+4\ge2^2\) (đúng)

- Giả sử BĐT đúng với \(n=k\ge2\) hay \(\left(k-2\right)2^{k-1}+2k\ge k^2\)

Ta cần chứng minh: \(\left(k-1\right)2^k+2\left(k+1\right)\ge\left(k+1\right)^2\)

\(\Leftrightarrow\left(k-1\right)2^k+1\ge k^2\)

Thật vậy: \(\left(k-1\right)2^k+1=2\left(k-2\right)2^{k-1}+2^k+1\ge2k^2-4k+2^k+1\)

\(\ge2k^2-4k+5=k^2+\left(k-2\right)^2+1>k^2\) (đpcm)

Do đó:

\(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}>0+1+...+n-1=\dfrac{n\left(n-1\right)}{2}\)

18 tháng 12 2020

a/ \(u_6=u_1+5d=8\Rightarrow u_1=8-5d\)

\(u_2=u_1+d;u_4=u_1+3d\)

\(\Rightarrow\left\{{}\begin{matrix}u_2=8-5d+d=8-4d\\u_4=8-5d+3d=8-2d\end{matrix}\right.\)

\(\Rightarrow\left(8-4d\right)^2+\left(8-2d\right)^2=16\Rightarrow...\)

b/ Câu này làm theo ý hiểu thôi, ko chắc đâu

\(Xet-S_n:\)

\(u_1=u_1\)

\(u_2=u_1+d\)

\(u_3=u_1+2d\)

......

\(u_n=u_1+\left(n-1\right)d\)

\(\Rightarrow S_n=u_1+u_2+...+u_n=u_1+u_1+d+...+u_1+\left(n-1\right)d=n.u_1+d+2d+....+\left(n-1\right)d\)

\(=n.u_1+\left(1+2+...+\left(n-1\right)\right)d=n.u_1+\dfrac{d\left(n-1\right).n}{2}=\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}\)

Tương tụ với S(2n)

\(S_{2n}=u_1+u_2+...+u_{2n}=u_1+u_1+d+....+u_1+\left(2n-1\right)d\)

\(=2n.u_1+d+2d+...+\left(2n-1\right)d=2n.u_1+\left(1+2+...+\left(2n-1\right)\right)d=2n.u_1+d.n\left(2n-2\right)=2n\left(u_1+\left(n-1\right).d\right)\)

\(4S_n=S_{2n}\Leftrightarrow4.\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}=2n\left(u_1+\left(n-1\right).d\right)\)

\(\Leftrightarrow2n\left[2u_1+\left(n-1\right)d\right]=2n\left[u_1+\left(n-1\right)d\right]\)\(\Leftrightarrow2u_1=u_1\Rightarrow u_1=0\)

\(u_5=u_1+4d=18\Rightarrow d=\dfrac{18}{4}=4,5\)

Ok check lại số má hộ tui nhó

 

18 tháng 12 2020

camon bn

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có:

\({a_1} = 0;{a_2} = 1;{a_3} = 2;{a_4} = 3;{a_5} = 4\).

\({b_1} = 2.1 = 2;{b_2} = 2.2 = 4;{b_3} = 2.3 = 6;{b_4} = 2.4 = 8\).

 \({c_1} = 1;{c_2} = {c_1} + 1 = 1 + 1 = 2;{c_3} = {c_2} + 1 = 2 + 1 = 3;{c_4} = {c_3} + 1 = 3 + 1 = 4\).

+ Chu vi đường tròn có bán kính \(n\) là \({d_n} = 2\pi n\).

Ta có: \({d_1} = 2\pi .1 = 2\pi ;{d_2} = 2\pi .2 = 4\pi ;{d_3} = 2\pi .3 = 6\pi ;{d_4} = 2\pi .4 = 8\pi \).

1: u2=4 và u4=10

=>u1+d=4 và u1+3d=10

=>2d=6 và u1+d=4

=>d=3 và u1=1

\(S_{10}=\dfrac{10\cdot\left(2\cdot1+9\cdot3\right)}{2}=5\cdot\left(2+27\right)=145\)

2: 

u3=6 và u5=16

=>u1+2d=6 và u1+4d=16

=>2d=10  và u1+2d=6

=>d=5 và u1=6-2*5=-4

\(S_{12}=\dfrac{12\cdot\left(2\cdot\left(-4\right)+11\cdot5\right)}{2}=6\cdot\left(-8+55\right)=6\cdot47=282\)

NV
12 tháng 12 2020

Số vecto tạo từ 2n điểm là: \(A_{2n}^2\)

Đa giác đều 2n đỉnh có n đường chéo, cứ 2 đường chéo cho ta 1 hình chữ nhật tương ứng, do đó số hình chữ nhật có đỉnh là đỉnh của đa giác đều là: \(C_n^2\)

\(\Rightarrow A_{2n}^2=9C_n^2\Leftrightarrow\dfrac{\left(2n\right)!}{\left(2n-2\right)!}=\dfrac{9.n!}{2!.\left(n-2\right)!}\)

\(\Leftrightarrow2n\left(2n-1\right)=\dfrac{9n\left(n-1\right)}{2}\)

\(\Leftrightarrow n=5\)

13 tháng 12 2020

dạ em chưa hiểu tại sao số vecto tạo từ 2n điểm và số hình chữ nhật có đỉnh là đỉnh của đa giác đều lại ra được như kia vậy ạ :(((

a: u4=4 và u6=8

=>u1+3d=4 và u1+5d=8

=>-2d=-4 và u1+3d=4

=>d=2 và u1=4-3d=-2

b: u1-u3+u5=10 và u1+u6=17

=>u1-u1-2d+u1+4d=10 và u1+u1+5d=17

=>u1+2d=10 và 2u1+5d=17

=>u1=16 và d=-3

c: u1+u2=5 và u3*u5=91

=>u1+u1+d=5 và (u1+2d)(u1+4d)=91

=>2u1+d=5 và (u1+2d)(u1+4d)=91

=>d=5-2u1 và (u1+10-4u1)(u1+20-8u1)=91

=>d=5-2u1 và (-3u1+10)(-7u1+20)=91

(-3u1+10)(-7u1+20)=91

=>21u1^2-60u1-70u1+200=91

=>21u1^2-130u1+109=0

=>u1=1 hoặc u1=109/21

Khi u1=1 thì d=5-2u1=5-2=3

Khi u1=109/21 thì d=5-2u1=5-218/21=-113/21