\(P=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

Bài 1 :

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b, ĐKXĐ : \(-x^2+10x-25\ge0\)

=> \(x^2-10x+25\le0\)

=> \(\left(x-5\right)^2\le0\)

=> \(x-5\le0\)

=> \(x\le5\)

Bài 2 :

a, Ta có : \(A=\sqrt{\left(2\sqrt{2}-5\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}\)

=> \(A=5-2\sqrt{2}+\sqrt{5}-2=3-2\sqrt{2}+\sqrt{5}\)

b, Ta có : \(B=\sqrt{9+4\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

=> \(B=\sqrt{4+2.2\sqrt{5}+5}-\sqrt{1-2\sqrt{5}+5}\)

=> \(B=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

=> \(B=2+\sqrt{5}-\sqrt{5}+1=3\)

c, Ta có : \(C=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

=> \(C=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}+\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

=> \(C=\frac{\sqrt{1+2\sqrt{3}+3}}{\sqrt{2}}+\frac{\sqrt{1-2\sqrt{3}+3}}{\sqrt{2}}\)

=> \(C=\frac{\sqrt{\left(1+\sqrt{3}\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(1-\sqrt{3}\right)^2}}{\sqrt{2}}\)

=> \(C=\frac{1+\sqrt{3}}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

28 tháng 3 2020
https://i.imgur.com/ufN2JtV.jpg
AH
Akai Haruma
Giáo viên
8 tháng 8 2020

Lời giải:

Gọi biểu thức cần rút gọn là $P$

Xét tử số: $\sqrt{4+2\sqrt{3}}-\sqrt{3}=\sqrt{3+2\sqrt{3.1}+1}-\sqrt{3}$

$=\sqrt{(\sqrt{3}+1)^2}-\sqrt{3}=|\sqrt{3}+1|-\sqrt{3}=1$

Xét mẫu số:

Ta dự đoán sẽ rút gọn được $\sqrt[3]{17\sqrt{5}-38}$

Đặt $17\sqrt{5}-38=(a+\sqrt{5})^3$ với $a$ nguyên.
$\Leftrightarrow 17\sqrt{5}-38=a^3+15a+\sqrt{5}(3a^2+5)$

$\Rightarrow 17=3a^2+5$ và $-38=a^3+15a$

$\Rightarrow a=-2$

Vậy $17\sqrt{5}-38=(-2+\sqrt{5})^3$

$\Rightarrow (\sqrt{5}+2)\sqrt[3]{17\sqrt{5}-38}=(\sqrt{5}+2)(-2+\sqrt{5})=1$

Vậy $P=\frac{1}{1}=1$

26 tháng 8 2019

Áp dụng CT căn phức tạp : \(\sqrt{A\pm\sqrt{B}}=\sqrt{\frac{A+\sqrt{A^2-B}}{2}}\pm\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\)

ĐKXĐ : \(-1\le x\le1\)

Áp dụng CT căn phức tạp , ta được : \(\sqrt{1+\sqrt{1-x^2}}=\sqrt{\frac{1+\sqrt{1-1+x^2}}{2}}+\sqrt{\frac{1-\sqrt{1-1+x^2}}{2}}\)

\(=\sqrt{\frac{1+\left|x\right|}{2}}+\sqrt{\frac{1-\left|x\right|}{2}}=\hept{\begin{cases}\frac{1}{\sqrt{2}}\left(\sqrt{1+x}+\sqrt{1-x}\right)\text{ nếu x }\ge0\\\frac{1}{\sqrt{2}}\left(\sqrt{1-x}+\sqrt{1+x}\right)\text{ nếu x }< 0\end{cases}}\)( kết quả như nhau )

\(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\sqrt{1-x^2}+\left(1-x\right)\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

\(\Rightarrow M=\frac{1}{\sqrt{2}}.\frac{\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)}{2+\sqrt{1-x^2}}\)

\(=\frac{1}{\sqrt{2}}.\left[\left(1+x\right)-\left(1-x\right)\right]=x\sqrt{2}\)

5 tháng 10 2017

Giải 2 bài luôn

Rút gọn:

\(Y=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}-\sqrt{100}}\)

\(Y=\sqrt{2}-\sqrt{1}+\sqrt{2}-\sqrt{3}+....+\sqrt{100}-\sqrt{99}\)

\(Y=\sqrt{10}-1\)

\(Y=9\)

Tính:

\(Y=\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+....+\frac{2014}{\sqrt{99}+\sqrt{100}}\)

\(Y=\sqrt{2}-\sqrt{1}+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(Y=\sqrt{10}-1\)

\(Y=9\)

\(Y=2014.9\)

\(Y=18126\)

5 tháng 10 2017

Y=\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\sqrt{2}-1+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(=-1+\sqrt{100}=\sqrt{100}-1=10-1=9\)