Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/3xD=1/(2x4)+1/(4x6)+...+1/(98x100)
2/3xD=2/(2x4)+2/(4x6)+...+1/(98x100)
2/3xD= 1/2-1/4+1/4-1/6+...+1/98-1/100
2/3xD=1/2-1/100
2/3xD=49/100
D=147/200
* Xét số bị chia, ta có:
(2017 - 1) : 1 + 1 = 2017
(2020 - 4): 1 + 1 = 2017
Suy ra: Số hạng thứ hai của hiệu có số số hạng là: 2017
Suy ra: Ta có thể chia số 2017 thành 2017 số 1 để có:
2017 - 1/4 - 2/5 - 3/6 - 4/7 + …. - 2017/2020
= 1 - 1/4 + 1 - 2/5 + 1 - 3/6 + 1 - 4/7 + …. + 1 - 2017/2020
= 3/4 + 3/5 + 3/6 + 3/7 + …. + 3/2020 =
3 x (1/4 + 1/5 + 1/6 + 1/7 + …. 1/2020) (1)
* Xét số chia, ta có:
1/20 = 1/(4 x 5)
1/25 = 1/(5 x 5)
1/30 = 1/(6 x 5)
…
1/10100 = 1/(2020 x 5)
Suy ra:
1/20 + 1/25 + 1/30 + 1/35 + … + 1/10100
1/(4 x 5) + 1/25 + 1/30 + 1/35 + … + 1/(2020 x5 )
= 1/5 x (1/4 + 1/5 + 1/6 + 1/7 + …. + 1/2020) (2)
Ta thấy số bị chia (1) và số chia (2) có thừa số giống nhau là: (1/4 + 1/5 + 1/6 + 1/7 + …. 1/2020)
Suy ra: B = 3 : 1/5 = 15
Ta có: \(M=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{6}-\frac{1}{11}=\frac{5}{66}\)
\(\Rightarrow M=\frac{5}{66}:\frac{1}{2}=\frac{5}{33}.\)
\(M=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)
\(M=\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}+\frac{2}{110}\)
\(M=\frac{2}{6\cdot7}+\frac{2}{7\cdot8}+\frac{2}{8\cdot9}+\frac{2}{9\cdot10}+\frac{2}{10\cdot11}\)
\(M=2\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\right)\)
\(M=2\left(\frac{1}{6}-\frac{1}{11}\right)\)
\(M=2\cdot\frac{5}{66}\)
\(M=\frac{5}{33}\)
a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)
\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)
\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)
Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)
\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)
\(2A=\frac{12}{3}-\frac{12}{99}\)
\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)
A = 5 x (\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9900}\))
A = 5 x ( \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\))
A = 5x( \(\frac{1}{2}-\frac{1}{100}\))
A = \(\frac{49}{20}\)
Gọi tổng trên là A
\(\Leftrightarrow A=5\times\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
(Tính dãy trong ngoặc) Gọi dãy trong ngoặc là B
\(\Leftrightarrow2B=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\)
\(\Leftrightarrow2B-B=\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
\(\Leftrightarrow B=\frac{1}{3}-\frac{1}{9900}+0+...+0\)
\(\Leftrightarrow B=\frac{3299}{9900}\)
\(\Rightarrow A=5\times\frac{3299}{9900}\)
\(\Rightarrow A=1,6661616...\approx1,7\)
b
Q=\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{9900}\)
Rồi giải tương tự như câu a là được
M=\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}=\frac{99}{20}\)