Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
\(a,13\dfrac{3}{5}-\left(8\dfrac{3}{5}-4\dfrac{3}{4}\right)\)
\(=\dfrac{68}{5}-\dfrac{43}{5}+\dfrac{19}{4}\)
\(=5+\dfrac{19}{4}\)
\(=\dfrac{20}{4}+\dfrac{19}{4}=\dfrac{39}{4}\)
\(------\)
\(b,11\dfrac{1}{4}-\left(2\dfrac{5}{7}+5\dfrac{1}{4}\right)\)
\(=\dfrac{45}{4}-\dfrac{19}{7}-\dfrac{21}{4}\)
\(=\left(\dfrac{45}{4}-\dfrac{21}{4}\right)-\dfrac{19}{7}\)
\(=6-\dfrac{19}{7}\)
\(=\dfrac{42}{7}-\dfrac{19}{7}=\dfrac{23}{7}\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{1}{9}\)
\(=\left(9-1-1-...1\right)+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)\)
\(=1+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}=\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}\)
\(=10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)=10B\)
vậy A:B=10
(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)+(1/7-1/8)+(1/8-1/9)+(1/9-1/10)
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
=1/2-1/10
=2/5
\(\frac{1}{10\times9}-\frac{1}{9\times8}-\frac{1}{8\times7}-\frac{1}{7\times6}-\frac{1}{6\times5}-\frac{1}{5\times4}-\frac{1}{4\times3}-\frac{1}{3\times2}-\frac{1}{2\times1}\)
\(=\frac{1}{10\times9}-\left(\frac{1}{9\times8}+\frac{1}{8\times7}+\frac{1}{7\times6}+\frac{1}{6\times5}+\frac{1}{5\times4}+\frac{1}{4\times3}+\frac{1}{3\times2}+\frac{1}{2\times1}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}\)
\(=-\frac{79}{90}\)
Ta có: \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{9}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{8}{9}\)
\(=\dfrac{1}{9}\)