Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=\(\frac{1}{3}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\right)\)
S=\(\frac{1}{3}.2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
S=\(\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
S=\(\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
\(F=\left(\frac{3}{1.8}+\frac{3}{8.15}+\frac{3}{15.22}+...+\frac{3}{106.113}\right)\)\(-\)\(\left(\frac{25}{50.55}+\frac{25}{55.60}+\frac{25}{60.65}+...+\frac{25}{95.100}\right)\)
\(=\frac{3}{7}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+...+\frac{1}{106}-\frac{1}{113}\right)\) - \(5\left(\frac{1}{50}-\frac{1}{55}+\frac{1}{55}-\frac{1}{60}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=\frac{3}{7}\left(\frac{1}{3}-\frac{1}{113}\right)-5\left(\frac{1}{50}-\frac{1}{100}\right)\)
\(=\frac{3}{7}.\frac{110}{339}-5.\frac{1}{100}\)
\(=\frac{1}{7}-\frac{1}{20}=\frac{13}{140}\)
= \(\frac{3}{7}\left(\frac{7}{1.8}+\frac{7}{8.15}+...+\frac{7}{106.103}\right)-5\left(\frac{5}{50.55}+\frac{5}{55.60}+...+\frac{5}{95.100}\right)\)
=\(\frac{3}{7}\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+...+\frac{1}{106}-\frac{1}{113}\right)-5\left(\frac{1}{50}-\frac{1}{55}+\frac{1}{55}-\frac{1}{60}+...+\frac{1}{95}-\frac{1}{100}\right)\)
=\(\frac{3}{7}\left(1-\frac{1}{113}\right)-5\left(\frac{1}{50}-\frac{1}{100}\right)\)
=\(\frac{3}{7}\cdot\frac{112}{113}-5\cdot\frac{1}{100}\)
=\(\frac{48}{113}-\frac{1}{20}\)
=\(\frac{847}{2260}\)
\(A=\frac{-5}{7}+\frac{3}{4}+\frac{-1}{5}+\frac{-2}{7}+\frac{1}{4}\)
\(A=\left(\frac{-5}{7}+\frac{-2}{7}\right)+\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{-1}{5}\)
\(A=-1+1+\frac{-1}{5}\)
\(A=\frac{-1}{5}\)
\(B=\frac{-4}{12}+\frac{18}{45}+\frac{-6}{9}+\frac{-21}{35}+\frac{6}{30}\)
\(B=\frac{-1}{3}+\frac{2}{5}+\frac{-2}{3}+\frac{-3}{5}+\frac{1}{5}\)
\(B=\left(\frac{-1}{3}+\frac{-2}{3}\right)+\left(\frac{2}{5}+\frac{-3}{5}+\frac{1}{5}\right)\)
\(B=-1+0\)
\(B=-1\)
b) Đặt B = A : C ta có:
\(A=\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3}{42}+\frac{5^3}{56}+\frac{5^3}{72}+\frac{5^3}{90}\)
\(A=5^3.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=5^3.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=5^3.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{5^3.2}{5}\)
\(A=5^2.2\)
\(\Rightarrow A=50\)
\(C=\frac{1124.2247-1123}{1124+1123.2247}\)
\(C=\frac{\left(1123+1\right).2274-1123}{1123.2247+1124}\)
\(C=\frac{1123.2247-2247-1123}{1123.2247+1124}\)
\(C=\frac{1123.2247+1124}{1123.2247+1124}=1\)
\(\Rightarrow B=50:1=50\)
Vậy B = 50
\(B1\)
\(=\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{37}-\frac{1}{38}-\frac{1}{39}\)
\(=1-\frac{1}{39}\)
\(=\frac{38}{39}\)
\(B2\)
\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+.....+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{25}{100}-\frac{1}{100}\)
\(=\frac{24}{100}\)
\(=\frac{6}{25}\)
Bài 1 :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{1.2}-\frac{1}{38.39}\)
\(=\frac{370}{741}\)
#)Giải :
\(\frac{1}{15}+\frac{4}{30}+\frac{9}{45}+\frac{16}{60}+...+\frac{81}{135}=\frac{1}{15}+\frac{2}{15}+\frac{3}{15}+...+\frac{9}{15}=\frac{45}{15}=3\)
Dễ ẹc ak :v rút gọn là ra
=(\(\frac{1}{15}\)+\(\frac{4}{30}\)+\(\frac{16}{60}\)+\(\frac{64}{120}\))+(\(\frac{9}{45}\)+\(\frac{36}{90}\))+(\(\frac{25}{75}\)+\(\frac{81}{135}\))
=(\(\frac{8}{120}\)+\(\frac{16}{120}\)+\(\frac{32}{120}\)+\(\frac{64}{120}\))+(\(\frac{18}{90}\)+\(\frac{36}{90}\))+\(\frac{14}{15}\).
=1+\(\frac{3}{5}\)+\(\frac{14}{15}\).
=\(\frac{8}{5}\)+\(\frac{14}{15}\).
=\(\frac{15}{38}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Vậy S = \(\frac{99}{100}:\frac{3}{2}\) = \(\frac{33}{50}\)