Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{98}{303}\)
\(=\frac{49}{303}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{98}{101}=\frac{49}{101}\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
Ta có :
\(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{53.55}\)
\(=\frac{4}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{53.55}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{55}\right)=2.\left(\frac{11}{55}-\frac{1}{55}\right)=2.\frac{10}{55}=2.\frac{2}{11}=\frac{4}{11}\)
Có gì không hiểu bạn hỏi lại mình nhé! Chúc bạn học tốt!
Ta có: \(\frac{4}{5.7}+\frac{4}{7.9}+.....+\frac{4}{53.55}\)
Đặt C = \(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{53.55}\)
\(\frac{1}{2}C=\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{9}\right)+....+\left(\frac{1}{53}-\frac{1}{55}\right)\)
\(\frac{1}{2}C=\frac{1}{5}-\frac{1}{55}\)
\(\frac{1}{2}C=\frac{2}{11}\)
\(C=\frac{2}{11}:\frac{1}{2}\)
Vậy C = \(\frac{4}{11}\)
Có gì sai thì mong bạn thông cảm
B= 1/4+(1/5+1/6+...+1/9)+(1/10+1/11+...+1/19)
Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2
Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2
Suy ra: B > 1/4+1/2+1/2 > 1
Ta có : 4n - 5 chia hết cho n - 3
=> 4n - 12 + 17 chia hết cho n - 3
=> 4(n-3) + 17 chia hết cho n - 3
=> 17 chia hết cho n - 3
=> n - 3 \(\in\) Ư(17) = {+1;+17}
Với n - 3 = 1 => n = 4
Với n - 3 = -1 =. n = 2
Với n - 3 = 17 => n = 20
Với n - 3 = -17 => n = -14
Vậy n \(\in\) {4;2;20;-14}
A=\(\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{1}{-7}=\frac{3}{5}-\frac{1}{7}\)
\(=\frac{21}{35}-\frac{5}{35}=\frac{16}{35}\)
S=2(1-1/3+1/3-1/5+...+1/97-1/99)
=2(1-1/99)
=2(98/99)
=196/99
2S=2/1*3+2/3*5+...+2/97*99
2S=1/1-1/3+1/3-1/5+...+1/97-1/99
2S=1-1/99
2S=98/99
S=49/99
De ma ban
giải chi tiết hộ nha