K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(D=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}\)

\(=\frac{9}{20}\)

20 tháng 2 2020

\(D=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{19.20}\)

\(D=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{20}\)

\(D=\frac{1}{2}-\frac{1}{20}\)

\(D=\frac{9}{20}\)

Vậy : . . .

HOK TỐT

6 tháng 12 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

\(A=1-\frac{1}{20}\)

\(A=\frac{19}{20}\)

6 tháng 12 2017

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

\(=1-\frac{1}{20}\)

\(=\frac{19}{20}\)

28 tháng 12 2016

dạng tổng quát của mỗi phân số là 1/n(n+1) = 1/n -1/n+1

áp dụng vào làm với các phân số trong biểu thức cuối cùng còn 1-1/10=19/20

11 tháng 9 2018

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{2}-\frac{1}{50}\)

\(=\frac{12}{25}\)

12 tháng 6 2020

\(\left(1+\frac{1}{2.3}\right)\left(1+\frac{1}{3.4}\right)\left(1+\frac{1}{4.5}\right)...\left(1+\frac{1}{99.100}\right)\)

\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)\left(1+\frac{1}{3}-\frac{1}{4}\right)\left(1+\frac{1}{4}-\frac{1}{5}\right)...\left(1+\frac{1}{99}-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}-\frac{1}{3}.1+\frac{1}{3}-\frac{1}{4}.1+\frac{1}{4}-\frac{1}{5}...1+\frac{1}{99}-\frac{1}{100}\)

\(=1+\frac{1}{2}-1.\left(\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}-1.\left(2\frac{1}{3}-2\frac{1}{4}-...-2\frac{1}{99}-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}-1\left[2.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-...-\frac{1}{99}\right)\right]-\frac{1}{100}\)

tới đây bí 

4 tháng 11 2016

A=\(\frac{19}{20}\),

4 tháng 11 2016

sao ra vay ban minh muoc cach giai bai

22 tháng 2 2016

Ta có : 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + n.( n + 1 ).3

=> 3A = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ..... + n.( n + 1 ).[ ( n + 2 ) - ( n - 1 ) ]

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + n.( n + 1 ).( n + 2 ) - ( n - 1 ).n.( n + 1 )

=> 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + [ ( n - 1 ).n.( n + 1 ) - ( n - 1 ).n.( n + 1 ) ] + n.( n + 1 ).( n + 2 )

=> 3A = n.( n + 1 ).( n + 2 )

=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

DD
4 tháng 4 2021

\(C=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{2013.2016}{2014.2015}\)

\(C=\frac{\left(1.2.3.....2013\right).\left(4.5.6.....2016\right)}{\left(2.3.4.....2014\right).\left(3.4.5.....2015\right)}\)

\(C=\frac{1}{2014}.\frac{2016}{3}\)

\(C=\frac{336}{1007}\)

16 tháng 8 2018

Tính: (1-2/2.3).(1-2/3.4).(1-2/4.5).(1-2/5.4).(1-2/98.99)

mifnh ko chac lam!:))