K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

\(\left(1+\frac{1}{2.3}\right)\left(1+\frac{1}{3.4}\right)\left(1+\frac{1}{4.5}\right)...\left(1+\frac{1}{99.100}\right)\)

\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)\left(1+\frac{1}{3}-\frac{1}{4}\right)\left(1+\frac{1}{4}-\frac{1}{5}\right)...\left(1+\frac{1}{99}-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}-\frac{1}{3}.1+\frac{1}{3}-\frac{1}{4}.1+\frac{1}{4}-\frac{1}{5}...1+\frac{1}{99}-\frac{1}{100}\)

\(=1+\frac{1}{2}-1.\left(\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}-1.\left(2\frac{1}{3}-2\frac{1}{4}-...-2\frac{1}{99}-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}-1\left[2.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-...-\frac{1}{99}\right)\right]-\frac{1}{100}\)

tới đây bí 

11 tháng 8 2019

\(A=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot...\cdot1-\frac{2}{99\cdot100}\)

\(2A=1-\left(\frac{1}{2\cdot3}\cdot\frac{1}{3\cdot4}\cdot\frac{1}{4\cdot5}\cdot...\cdot\frac{1}{99\cdot100}\right)\)

\(2A=1-\left(\frac{1}{2}-\frac{1}{3}\cdot\frac{1}{3}-\frac{1}{4}\cdot\frac{1}{4}-\frac{1}{5}\cdot...\cdot\frac{1}{99}\cdot\frac{1}{100}\right)\)

\(2A=1-\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(2A=1-\frac{49}{100}\)

\(2A=\frac{51}{100}\)

\(A=\frac{51}{100}:2\)

\(A=\frac{51}{200}\)

1 tháng 11 2016

\(\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)

\(=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)

\(=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5..100}\)

\(=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)

1 tháng 11 2016

\(=2\left(\frac{1}{2}-\frac{1}{2.3}\right).2\left(\frac{1}{2}-\frac{1}{3.4}\right)...2\left(\frac{1}{2}-\frac{2}{99.100}\right)\)
\(=2^{89}.\left(\frac{1}{2}.98-\frac{1}{2}+\frac{1}{100}\right)\)

\(=2^{98}.\left(49-\frac{49}{100}\right)\)

= \(\frac{2^{98}.4851}{100}\)

22 tháng 6 2016

=\(2\left(\frac{1}{2}-\frac{1}{2.3}\right).2\left(\frac{1}{2}-\frac{1}{3.4}\right)....2\left(\frac{1}{2}-\frac{1}{99.100}\right)\)

=\(2^{89}\left(\frac{1}{2}.98-\frac{1}{2}+\frac{1}{100}\right)\)

\(=2^{98}.\left(49-\frac{49}{100}\right)=\frac{2^{98}.4851}{100}\)

Gọi tổng trên là A
A=1/1.2.3+1/2.3.4+1/3.4.5+...1/98.99.100
Ta xét :
1/1.2 ‐ 1/2.3 = 2/1.2.3; 1/2.3 ‐ 1/3.4 = 2/2.3.4;...; 1/98.99 ‐ 1/99.100 = 2/98.99.100
tổng quát: 1/n﴾n+1﴿ ‐ 1/﴾n+1﴿﴾n+2﴿ = 2/n﴾n+1﴿﴾n+2﴿.
Do đó: 2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= ﴾1/1.2 ‐ 1/2.3﴿ + ﴾1/2.3 ‐ 1/3.4﴿ +...+ ﴾1/98.99 ‐ 1/99.100﴿
= 1/1.2 ‐ 1/2.3 + 1/2.3 ‐ 1/3.4 + ... + 1/98.99 ‐ 1/99.100
= 1/1.2 ‐ 1/99.100
= 1/2 ‐ 1/9900
= 4950/9900 ‐ 1/9900
= 4949/9900.
Vậy A = 4949 / 9900

19 tháng 8 2017

Bn làm sai r . kết quả là \(\frac{101}{297}\) nhưng mik ko bt cách giải thôi

15 tháng 8 2016

A= 1-2+3-4+4-5+...+99-100

A = ( 1 - 2 ) + ( 2 - 3 ) + ....+ ( 99 - 100 )

A = ( - 1 ) + ( - 1 ) +....+ ( - 1 )

A = ( - 1 ) . 50

A = - 50

B = 1.2 + 2.3 + 3.4 + 4.5 +...+ 99.100 
Nhân cả 2 vế với 3, ta được: 
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3 
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98) 
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100 
= 99.100.101 
=) B = (99.100.101) :3 
B = 333300  
Vậy  B= 333300 

 

15 tháng 8 2016

A= 1-2+3-4+4-5+...+99-100

A = (1-2) + (3-4) + (4-5) + ... + (99-100)

A = (-1) + (-1) + (-1) + ...+ (-1)

A = (-1).50

A = 1