K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

a)

Vì 2/9=6/27=8/36=12/54=16/72=18/81 nên:

2/9+6/27+8/36+12/54+16/72+18/81=

2/9+2/9+2/9+2/9+2/9+2/9=

2/9*6=

12/9=

4/3

Vậy 2/9+6/27+8/36+12/54+16/72+18/81=4/3

b)

Ta có:

1-2/5=3/5

1-2/7=5/7

1-2/9=7/9

...

1-2/99=97/99

Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=

3/5*5/7*7/9*...*97/99=

(3*5*7*...*97)/(5*7*9*...*99)=

3/99=

1/33

Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=1/33

c)

Gọi biểu thức 1/2+1/4+1/8+1/16+...+1/1024 là S,ta có:

S=1/2+1/4+1/8+1/16+...+1/1024

S*2=1+1/2+1/4+1/8+...+1/512

S*2-S=(1+1/2+1/4+1/8+...+1/512)-(1/2+1/4+1/8+1/16+...+1/1024)

S=1-1/1024

S=1023/1024

Vậy 1/2+1/4+1/8+1/16+...+1/1024=1023/1024

23 tháng 1 2017

Cảm ơn bạn nhé!

28 tháng 5 2023

         A =    \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)\(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{128}\)

A\(\times\) 2 =  1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)\(\dfrac{1}{32}\)\(\dfrac{1}{64}\) 

\(\times\) 2 - A = 1 - \(\dfrac{1}{128}\)

A\(\times\)(2-1) = \(\dfrac{128-1}{128}\)

A           = \(\dfrac{127}{128}\)

28 tháng 5 2023

Gọi \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là B

\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)

\(2\cdot B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}\)

\(2\cdot B-B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\right)\)

\(B=1+\left(\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+.....+\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)

\(B=1+0-\dfrac{1}{128}\)

\(B=1-\dfrac{1}{128}\)

\(B=\dfrac{128}{128}-\dfrac{1}{128}\)

\(B=\dfrac{127}{128}\)

17 tháng 9 2021

\(\frac{1}{2}\)\(\frac{1}{4}\)\(\frac{1}{16}\)\(\frac{1}{32}\)\(\frac{1}{64}\)\(\frac{1}{128}\)\(\frac{123}{234}\)

2 tháng 7 2019

Bài 1:

2 tháng 7 2019

Bài 1: 1/3+1/9+1/27+1/81+1/243+1/729

Đặt:
A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Nhân A với 3 ta có:
\(Ax3=3+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow Ax3-S=3-\frac{1}{243}\)
\(\Rightarrow2A=\frac{2186}{729}\)
\(\Rightarrow A=\frac{2186}{729}:2\)
\(\Rightarrow A=\frac{1093}{729}\)

b: A=1/3+1/9+...+1/3^10

=>3A=1+1/3+...+1/3^9

=>A*2=1-1/3^10=(3^10-1)/3^10

=>A=(3^10-1)/(2*3^10)

c: C=3/2+3/8+3/32+3/128+3/512

=>4C=6+3/2+...+3/128

=>3C=6-3/512

=>C=1023/512

d: A=1/2+...+1/256

=>2A=1+1/2+...+1/128

=>A=1-1/256=255/256

15 tháng 7 2018

Khó quá

10 tháng 8 2018

1/2 + 1/4 + 1/8 +1/16 + 1/32 + 1/64 + 1/128 

= 2 . ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 )

= 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 - 1/128 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128  ( Rồi giản ước )

= 1

22 tháng 10 2020

bài 1 tính nhanh

mik xin sửa đề câu a thành thế này ~

\(a,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

 \(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) 

\(A\cdot2-A=\) (  \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) )  - (  \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\) )

\(A=1-\frac{1}{256}\)

\(A=\frac{255}{256}\)

\(b,\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

đặt \(B=\) \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) 

     \(B\cdot3=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(B\cdot3-B=\)  ( \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) ) 

\(B\cdot2=\) \(1-\frac{1}{729}\)

\(B\cdot2=\frac{728}{729}\)

\(B=\frac{728}{729}:2\)

\(B=\frac{364}{729}\) 

\(c,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)

ĐẶT \(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)

    \(C=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)

\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(C=\frac{1}{1}-\frac{1}{6}\)

\(C=\frac{5}{6}\)

15 tháng 11 2020

Cảm ơn bạn nhé

1 tháng 12 2023

😵

1 tháng 12 2023

           A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)

     2 \(\times\) A = 1   + \(\dfrac{1}{2}\) +  \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)

 2 \(\times\) A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\))

        A      = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\)

        A       =  1 - \(\dfrac{1}{32}\)

        A       =   \(\dfrac{31}{32}\)

\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}\)

\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+...+\left(\frac{1}{1024}-\frac{1}{2048}\right)\)

\(A=1-\frac{1}{2048}\)

\(\Rightarrow\)\(A=\frac{2047}{2048}\)

\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(3B-B=1-\frac{1}{2187}\)

\(2B=\frac{2186}{2187}\)

\(\Rightarrow B=\frac{2186}{4374}=\frac{1093}{2187}\)