Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=100^2+200^2+300^2+...+1000^2\)
\(=100^2\cdot\left(1+2^2+3^2+...+10^2\right)\)
\(=100^2\cdot385=3850000\)
2, 100^2+200^2+300^2+..+1000^2
=100^2+2^2×100^2+3^2×100^2+...+100^2×10^2
=100^2×( 1^2+2^2+3^2+..+10^2)
=100^2×385
= 3850000
S = 100^2+200^2+300^2+.....+1000^2
S=100^2+(100.2)^2+(100.3)^2+....+(100....
S = 100^2(1^2+2^2+3^2+...+10^2)
S=100^2.385
S=3850000
A=1002+2002+3002+...+10002=(100*1)2+(100*2)2+(100*3)2+...+(100*10)2
=1002*12+1002*22+...+1002*102
=1002(12+22+...+102)=10 000*385=3 850 000
\(A=100^2+200^2+300^2+...+1000^2\)
\(A=\left(100\cdot1\right)^2+\left(100\cdot2\right)^2+\left(100\cdot3\right)^2+...+\left(100\cdot10\right)^2\)
\(A=100^2\cdot1^2+100^2\cdot2^2+100^2\cdot3^2+...+100^2\cdot10^2\)
\(A=100^2\left(1^2+2^2+3^2+...+10^2\right)\)
\(A=10000\cdot385\)
\(A=3850000\)
Cách này có j sai các bạn bảo nhé
12+22+32+...+102=385
=>1+4+9+...+100=385
mà A=1002+2002+3002+...+10002
=10000+40000+90000+...+1000000
==>(10000+40000+90000+...+1000000) : (1+4+9+...+100)
=10000
==>A=10000 *385
A=3850000
A = 1002+ 2002+ 3002+ ... + 10002
A = 3850000
ĐS : 3850000
\(A=100^2+200^2+300^2+...+1000^2\)
\(A=100\left(1^2+2^2+3^2+...+10^2\right)\)
Mà \(1^2+2^2+3^2+...+10^2=385\)
\(A=100.385\)
\(A=38500\)
Nhận thấy :
1002 = 12.10000
2002 = 22.10000
....
10002 = 102.10000
=> 1002 + 2002 + ... + 10002 = (12 + 22 + ... + 102).10000 = 385.10000 = 3 850 000
Vậy A = 3 850 000
\(A=100^2+200^2+300^2+...+1000^2\)
=>\(A=100^2\left(1^2+2^2+3^2+...+10^2\right)\)
=>\(A=10000.385\)
=>\(A=3850000\)
\(A=100^2+200^2+300^2+......+1000^2\)
\(=1000^2\left(1^2+2^2+3^2+...+10^2\right)\)
\(=10000.385\\\)
\(=3850000\)
A = 1002 + 2002 + 3002 + ... + 10002
= (1 . 100)2 + (2 . 100)2 + (3 . 100)2 + ... + (10 . 100)2
= 12 . 1002 + 22 . 1002 + 32 . 1002 + ... + 102 . 1002
= 10000(12 + 22 + 32 + ... 102)
Mà theo đề bài, 12 + 22 + 32 + ... 102 = 385 nên 10000(12 + 22 + 32 + ... 102) = 10000 . 385
= 3850000