Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2010.2009-1}{2008.2010+2009}:\frac{1}{1999}=\frac{2008.2010+2010-1}{2008.2010+2009}.1999=\frac{2008.2010+2009}{2008.2010+2009}.1999=1\cdot1999=1999\)
Giải:
Ta có:
A=20092008+1/20092009+1
2009A=20092009+2009/20092009+1
2009A=20092009+1+2008/20092009+1
2009A=20092009+1/20092009+1 + 2008/20092009+1
2009A=1+2008/20092009+1
Tương tự:
B=20092009+1/20092010+1
2009B=1+2008/20092010+1
Vì 2008/20092009+1 > 2008/20092010+1 nên 2009A>2009B
⇒A>B
A = 1 + 2 + 3 + ... + 2008 + 2009 + 2010
A = (1 + 2010) x 2010 : 2
A = 2011 x 1005
A = 2021055
\(\frac{2010.2009-1}{2008.2010+2009}:\frac{1}{1999}\)= \(\frac{2010.2008+2010-1}{2008.2010+2009}\): \(\frac{1}{1999}\)
= \(\frac{2010.2008+2009}{2008.2010+2009}:\frac{1}{1999}\)
= 1 :\(\frac{1}{1999}\)= 1999 .
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....+\frac{1}{80}\)
\(=\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+.....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+......+\frac{1}{80}\right)\)
\(>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+.....+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\right)\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
2010.2009-1 / 2008 - 2010 + 2009
2010 - 2010 + 2009 - 2009 . 1/2008
= 0+0. 1/2008
= 0
k mk na <3