Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)+\left(\dfrac{5}{6}+\dfrac{19}{20}+...+\dfrac{2549}{2550}\right)\)
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+..+\dfrac{1}{50\cdot51}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{50\cdot51}\right)\)
\(B=\left(1+1+...+1\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\)
\(B=1\cdot49=49\) (vì có (50 - 2) : 1 + 1 = 49 số hạng 1)
1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7
=1/1-1/2+1/2-1/3+...-1/7
=1+(1/2-1/2+1/3-1/3+...+1/6-1/6)-1/7
=1 +0+0+...-1/7
=1-1/7
=6/7
đặt A=1/1x2+1/2x3+1/3x4+1/4x5+1/5x6
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{5}-\frac{1}{6}\right)=1-\frac{1}{6}=\frac{5}{6}.\)
Bài nào khó lắm thì mới hỏi thôi chứ bài này dễ mà bạn tự vận động não đi
\(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{11\cdot12}=x\)
\(\Leftrightarrow x=\dfrac{1}{3}-\dfrac{1}{12}=\dfrac{4}{12}-\dfrac{1}{12}=\dfrac{1}{4}\)
\(\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{20\times21}=\dfrac{x}{14}\)
\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{20}-\dfrac{1}{21}=\dfrac{x}{14}\)
\(\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{x}{14}\)
\(\dfrac{7}{21}-\dfrac{1}{21}=\dfrac{x}{14}\)
\(\dfrac{6}{21}=\dfrac{x}{14}\)
\(\Rightarrow x.21=6.14\)
\(x.21=84\)
\(x=84:21\)
\(x=4\)
Vậy x = 4
1/3x4 + 1/4x5 + 1/5x6 + .. + 1/20x21 = x/14
1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + .. + 1/20 - 1/21 = x/14
1/3 - 1/21 = x/14
7/21 - 1/21 = x/14
6/21 = x/14
x . 21 = 6 x 14
x x 21 = 84
x = 84 : 21
x = 4
\(\left(x+\dfrac{1}{2\times3}\right)+\left(x+\dfrac{1}{3\times4}\right)+\left(x+\dfrac{1}{4\times5}\right)+\left(x+\dfrac{1}{5\times6}\right)=\dfrac{25}{3}\)
\(x+\dfrac{1}{2\times3}+x+\dfrac{1}{3\times4}+x+\dfrac{1}{4\times5}+x+\dfrac{1}{5\times6}=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}\right)=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=\dfrac{25}{3}\)
\(x\times4+\dfrac{4}{12}=\dfrac{25}{3}\)
\(x\times4=\dfrac{25}{3}-\dfrac{4}{12}\)
\(x\times4=\dfrac{25}{3}-\dfrac{1}{3}\)
\(x\times4=\dfrac{24}{3}\)
\(x\times4=8\)
\(x=8\div4\)
\(x=2\)
:))
\(\text{Đặt }A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{100}\)
\(\Leftrightarrow A=\frac{49}{100}\)
1/2x3+1/3x4+....+1/99x100
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/99-1/100
=1-1/100
=99/100
1/3.4 + 1/4.5+ 1/5.6 +...... + 1/2009.2010
= 1/3 -1/4+1/4-1/5 +1/5-1/6+....+1/2009-1/2010
= 1/3 - 1/2010
= 223/670
1/3.4+1/4x5+1/5x6+............+1/2009x2010
=1/3+1/4-1/4+1/5-1/5+1/6+.........+1/2009-1/2010
=1/3-1/2010
=223/670