Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghĩa là dzậy nè:1/1x6 + 1/6x11 + 1/11x16 + ..... +1/491x496 + 1/496x501
b, 1/1*6 + 1/6*11 + 1/11*16 ............ +1/491*496 + 1/496*501
=1/6(1-1/6+1/6-1/11+...+1/491-1/496)
=1/6(1-1/496)
=1/6.495/496
=495/2976
\(A=\frac{1}{1\times6}+\frac{1}{6\times11}+\frac{1}{11\times16}+...+\frac{1}{31\times36}\)
\(=\frac{1}{5}.\left(\frac{5}{1\times6}+\frac{5}{6\times11}+...+\frac{5}{31\times36}\right)=\frac{1}{5}\times\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{31}-\frac{1}{36}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{36}\right)=\frac{1}{5}\times\frac{35}{36}=\frac{7}{36}\)
\(\left(\frac{3}{5}+\frac{2}{5}\right)+\left(\frac{6}{11}+\frac{16}{11}\right)+\left(\frac{7}{13}+\frac{19}{13}\right)\)
= 1 + 2 + 2
= 5
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
=\(1-\frac{1}{7}\)
=\(\frac{6}{7}\)
đầu bài: 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20
= (1+19)+(2+18)+(3+17)+(4+16)+(5+15)+(6+14)+(7+13)+(8+12)+(9+11)+20
= 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 +20
= 20.10
= 200
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=\(\frac{\left(1+20\right)20}{2}\)=210
\(S=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{496\cdot501}\)
\(S=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{496}-\frac{1}{501}\right)\)
\(S=\frac{1}{5}\left(1-\frac{1}{501}\right)\)
\(S=\frac{1}{5}\cdot\frac{500}{501}\)
\(S=\frac{100}{501}\)