Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2001\times2003}+\dfrac{1}{2003\times2005}+...+\dfrac{1}{2011\times2013}\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{2001\times2003}+\dfrac{2}{2003\times2005}+...+\dfrac{2}{2011\times2013}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2001}-\dfrac{1}{2003}+\dfrac{1}{2003}-...+\dfrac{1}{2011}-\dfrac{1}{2013}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2001}-\dfrac{1}{2013}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{4}{1342671}\)
\(=\dfrac{2}{1342671}\)
\(\dfrac{1}{2001\times2003}+\dfrac{1}{2003\times2005}+\dfrac{1}{2005\times2007}+...+\dfrac{1}{2011\times2013}\) (sửa đề)
\(=\dfrac{1}{2}\times\left(\dfrac{2}{2001\times2003}+\dfrac{2}{2003\times2005}+\dfrac{2}{2005\times2007}+...+\dfrac{2}{2011\times2013}\right)\)
\(=\dfrac{1}{2}\times\left(\dfrac{1}{2001}-\dfrac{1}{2003}+\dfrac{1}{2003}-\dfrac{1}{2005}+\dfrac{1}{2005}-\dfrac{1}{2007}+...+\dfrac{1}{2011}-\dfrac{1}{2013}\right)\)
\(=\dfrac{1}{2}\times\left(\dfrac{1}{2001}-\dfrac{1}{2013}\right)\)
\(=\dfrac{1}{2}\times\dfrac{4}{1342671}\)
\(=\dfrac{2}{1342671}\)
=(1-2-3+4)+(5-6-7+8)+...+(2005-2006-2007+2008)+2009
=2009
a =2004.10+1992+2002+2004
= 2004(10+1)+3994
= 2004.11+3994=26038
b =2003(1+493+1520)=2003.2024=4054072
Vì 125 125x127 – 127 127x125 = 1001x125x127 – 1001x127x125 = 0
nên : (1+3+5+...+2005)(125 125x127 – 127 127x125) = 0
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
( 1+3+5+7+…+2003+2005) x (125 125 x 127 – 127 127 x 125)
= ( 1+3+5+7+…+2003+2005) x (125 x 1001 x 127 – 127 x 1001x 125)
= ( 1+3+5+7+…+2003+2005) x 0 = 0
\(\frac{1}{2001\cdot2003}+\frac{1}{2003\cdot2004}+...+\frac{1}{2011\cdot2013}\)
\(=\frac{1}{2}\left(\frac{2}{2001\cdot2003}+\frac{2}{2003\cdot2005}+...+\frac{2}{2011\cdot2013}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2001}-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2005}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2001}-\frac{1}{2013}\right)\)
tự tính tiếp