K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)

\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)

\(M=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)

\(M=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)

\(M=2^{10}\)

\(M=1024\)

22 tháng 7 2016

\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\times\left(2^{20}+1\right)}{2^{30}\times\left(2^{20}+1\right)}=2^{10}=1024\)

Chúc bạn học tốt ^^

1 tháng 12 2016

- Có thể cho tôi một số bài tập dạng này không?

19 tháng 7 2016

\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)

19 tháng 7 2016

\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)

     = \(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)

5 tháng 4 2020

\(M=\frac{4^{20}.\left(2^{20}+1\right)}{4^{15}.\left(4^{10}+1\right)}\)

\(M=4^5\)

\(M=1024\)

Chúc bạn học tốt cho mik k nha.Thanks

19 tháng 8 2018

\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)

\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)

\(=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)

\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)

\(=\frac{2^{40}}{2^{30}}=2^{10}\)

19 tháng 8 2018

\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)

\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)

\(=\frac{2^{60}+2^{40}}{2^{25}+2^{30}}\)

\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{25}\left(1+2^5\right)}\)

\(=\frac{2^{15}\left(2^{20}+1\right)}{1+2^5}\)

\(=\frac{2^{35}+2^{15}}{1+2^5}\)

9 tháng 6 2017

\(M=\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\)

\(=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)

4 tháng 9 2017

\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\times\left(2^{20}+1\right)}{2^{30}\times\left(2^{20}+1\right)}=2^{10}=1024\)

30 tháng 11 2017

 \(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)+\left(2^6\right)^5}\)

\(M=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)

\(M=\frac{2^{40}\cdot2^{20}+2^{40}\cdot1}{2^{30}\cdot2^{20}+2^{30}\cdot1}\)

\(M=\frac{2^{40}\cdot\left(2^{20}+1\right)}{2^{30}\cdot\left(2^{20}+1\right)}\)

\(M=\frac{2^{40}}{2^{30}}\)

\(M=2^{40-30}\)

\(M=2^{10}\)

\(M=1024\)

22 tháng 9 2017

M=820 +420/425+645

M=(23)20+(22)20/(22)25+(25)5

M=260+240/250+225

M=225(235+215)/225(225+1)

M=235+215/225+1

30 tháng 8 2016

\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{4^{20}.\left(2^{20}+1\right)}{4^{25}+\left(4^3\right)^5}=\frac{4^{20}.\left(2^{20}+1\right)}{4^{25}+4^{15}}\)

                                                                      \(=\frac{4^{20}.\left(4^{10}+1\right)}{4^{25}.\left(4^{10}+1\right)}=\frac{1}{4^5}=\frac{1}{1024}\)

a: \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)

b: \(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5\)

12 tháng 8 2021

a)\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)

b)\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{9^{10}\cdot5^{30}}{3^{15}\cdot5^{30}}=\dfrac{3^{20}}{3^{15}}=3^5=243\)

11 tháng 12 2016

\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)=\(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)=\(\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)=\(\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)=\(\frac{2^{40}}{2^{30}}\)= 210