K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2021

Ta thấy \(1-\dfrac{1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\) với mọi \(n>0\).

Từ đó \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{100^2}\right)=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}...\dfrac{99.101}{100}=\left(\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{99}{100}\right).\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{101}{100}\right)=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\).

cảm ơn bạn

NV
5 tháng 3 2023

Ta có:

\(1-\dfrac{1}{1+2+...+n}=1-\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=\dfrac{n\left(n+1\right)-2}{n\left(n+1\right)}=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(\Rightarrow S=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\dfrac{99.102}{100.101}\)

\(=\dfrac{1.2.3...99}{2.3.4...100}.\dfrac{4.5.6...102}{3.4.5...101}=\dfrac{1}{100}.\dfrac{102}{3}=\dfrac{17}{50}\)

5 tháng 3 2023

e cảm ơn thầy ạ!

19 tháng 4 2017

\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)

\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)

\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)

\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)

Vì (2) > (1) => B > A

Câu 1: 

=>15(2x+1)-8(3x-1)=100

=>30x+15-24x+8=100

=>6x+23=100

hay x=77/6

Câu 2:

=>2(5x-3)+12-3(7x-1)=x+2

=>10x-6+12-21x+3-x-2=0

=>-12x=-7

hay x=7/12

Câu 3: 

\(\Leftrightarrow2\left(x^2-1\right)+3\left(x+1\right)=2\left(x^2-4x+4\right)\)

\(\Leftrightarrow2x^2-2+3x+3-2x^2+8x-8=0\)

=>11x-7=0

hay x=-7/11

20 tháng 1 2022

Câu 4:

(x - 4)^3/6 + 1 = x(x + 1)/2 - (x - 5)(x + 5)/3

<=> (x - 4)^3 + 6/6 = x^2 + x/2 - x^2 - 25/3

<=> (x - 4)^3 + 6/6 = 3x^2 + 3x - 2x^2 + 50/6

<=> (x - 4)^3 + 6 = 3x^2 + 3x - 2x^2 + 50

<=> x^3 - 12x^2 + 48x - 58 = x^2 + 3x + 50

<=> x^3 -13x^2 + 45x - 108 = 0

Đến đây bạn bấm máy nhẩm nghiệm là ra nhé

Câu 5:

3(x + 2)^3/5 - (x - 1)^2/10 = (x - 3)(x + 3)/2

<=> 6(x + 2)^3 - (x - 1)^2/10 = 5(x^2 - 9)/10

<=> 6(x + 2)^3 - (x - 1)^2 = 5(x^2 - 9)

<=> 6x^3 + 36x^2 + 72x + 48 - x^2 + 2x - 1 - 5x^2 + 45 = 0

<=> 6x^3 + 30x^2 + 74x + 92 = 0

Đến đây bạn bấm máy nhẩm nghiệm như câu 4 nhé

29 tháng 8 2017

A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)

Xét: n4 + 4 = (n2+2)2 - 4n2 = (n2-2n+2)(n2+2n+2) = [(n-1)2+1][(x+1)2+1] nên: A = \(\dfrac{\left(0^2+1\right)\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\dfrac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.....\dfrac{\left(20^2+1\right)\left(22^2+1\right)}{\left(22^2+1\right)\left(24^2+1\right)}=\dfrac{1}{24^2+1}=\dfrac{1}{577}\)

B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)

Đặt C = \(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)

= \(\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)

= \(n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)

= \(\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}\)

= \(n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\right)\)

Vậy ...

1 tháng 10 2017

Ta có một số phân tích sau :  \(a^4\)\(+\)\(4\)\(=\)\(\left(a^2-2a+2\right)\)\(\left(a^2+2a+2\right)\)

Nhân mỗi biểu thức trong ngoặc ở cả tử thức với  \(16\)\(=\)\(2^4\), ta được :

\(A\)\(=\)\(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)

\(A\)\(=\)\(\frac{\left(2^4+4\right)\left(6^4+4\right)\left(10^4+4\right)...\left(58^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)...\left(60^4+4\right)}\)

Kết hợp với phân tích nêu trên, khi đó :

\(A\)\(=\)\(\frac{\left(2^2-2.2+2\right)\left(2^2+2.2+2\right)\left(6^2-2.6+2\right)\left(6^2+2.6+2\right)....\left(58^2-2.58+2\right)\left(58^2+2.58+2\right)}{\left(4^2-2.4+2\right)\left(4^2+2.4+2\right)\left(8^2-2.8+2\right)\left(8^2+2.8+2\right)....\left(60^2-2.60+2\right)\left(60^2+2.60+2\right)}\)

\(\Rightarrow\)\(A\)\(=\)\(\frac{2.10.26.50.82.122....3250.3482}{10.26.50.82.122....3482.3722}\)\(=\)\(\frac{2}{3722}\)\(=\)\(\frac{1}{1861}\)

a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)

\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)

\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)

\(\Leftrightarrow8x^2+4x+11=0\)

\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)

Vì Δ<0 nên phương trình vô nghiệm

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

b.

PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)

\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)

\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)

\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)

$\Leftrightarrow 5x-\frac{15}{4}=0$

$\Leftrightarrow x=\frac{3}{4}$

 

4 tháng 12 2018

a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)

( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)

(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)

1/x +1/x+4

2x+4/x(x+4)

4 tháng 12 2018

Câu b bạn tách các mẫu thành nhân tử rồi làm như câu a nhé

25 tháng 1 2022

1, bạn xem lại đề 

2, 15(x-3) + 8x-21 = 12(x+1) +120 

<=> 23x - 66 = 12x + 132 

<=> 11x = 198 <=> x = 198/11 

3, 10(3x+1) + 5 - 100 = 8(3x-1) - 6x - 4 

<=> 30x + 10 - 95 = 18x -12

<=> 12x = 73 <=> x = 73/12 

25 tháng 1 2022

Em cảm ơn