K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

\(K=\left(1-\dfrac{3}{2\cdot4}\right)\left(1-\dfrac{3}{3\cdot5}\right)\cdot...\cdot\left(1-\dfrac{3}{19\cdot21}\right)\)

\(=\dfrac{3^2-1-3}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2-1-3}{\left(4-1\right)\left(4+1\right)}\cdot...\cdot\dfrac{20^2-4}{\left(20-1\right)\left(20+1\right)}\)

\(=\dfrac{\left(3-2\right)\left(3+2\right)}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{\left(4-2\right)\left(4+2\right)}{\left(4-1\right)\left(4+1\right)}\cdot...\cdot\dfrac{18\cdot22}{\left(20-1\right)\left(20+1\right)}\)

\(=\dfrac{1\cdot5}{2\cdot4}\cdot\dfrac{2\cdot6}{3\cdot5}\cdot...\cdot\dfrac{18\cdot22}{19\cdot21}\)

\(=\dfrac{1\cdot2\cdot3\cdot...\cdot21\cdot22}{2\cdot3\cdot4\cdot5\cdot...\cdot19\cdot20\cdot21}=1\cdot22=22\)

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)

$\Rightarrow -11x\geq 0$

$\Rightarrow x\leq 0$

Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$

PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$

$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$

$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$

$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$

$\frac{1}{2}(1-\frac{1}{21})=-x$

$\frac{10}{21}=-x$

$\Rightarrow x=\frac{-10}{21}$

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)

$\Rightarrow -11x\geq 0$

$\Rightarrow x\leq 0$

Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$

PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$

$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$

$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$

$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$

$\frac{1}{2}(1-\frac{1}{21})=-x$

$\frac{10}{21}=-x$

$\Rightarrow x=\frac{-10}{21}$

16 tháng 5 2022

a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)

16 tháng 5 2022

b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)

24 tháng 7 2020

Bài làm:

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(=\left(x^2+5x+5\right)^2\)

b) Tương tự như a phân tích và đặt ra được: \(t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+11=t\)\(\Rightarrow\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

24 tháng 7 2020

Làm mẫu cho 1 vd:

a, (x+1)(x+2)(x+3)(x+4)+1

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(1)

Đặt \(y=x^2+5x+5\)

Khi đó ::

(1) = \(\left(y-1\right)\left(y+1\right)+1\)

\(=y^2-1+1=y^2\)

Thay vào ta được: \(\left(x^2+5x+5\right)^2\)

1: x=3/4-1/2=3/4-2/4=1/4

2: x-1/5=2/11

=>x=2/11+1/5=21/55

3: x-5/6=16/42-8/56

=>x-5/6=8/21-4/28=5/21

=>x=5/21+5/6=15/14

4: x/5=5/6-19/30

=>x/5=25/30-19/30=6/30=1/5

=>x=1

5: =>|x|=1/3+1/4=7/12

=>x=7/12 hoặc x=-7/12

6: x=-1/2+3/4

=>x=3/4-1/2=1/4

11: x-(-6/12)=9/48

=>x+1/2=3/16

=>x=3/16-1/2=-5/16

21 tháng 7 2023

1)x= 1/4

2)x= 2/11+ 1/5

   x= 21/55

3)x - 5/6 = 5/21

   x         = 5/21+5/6

   x         = 15/14

4)x/5 = 5/6 + -19/30

   x:5 = 1/5

   x    = 1/5.5

   x    = 1

5) |x| - 1/4 = 6/18

    |x|           = 6/18 - 1/4

    |x|            =7/12

⇒x= 7/12 hoặc -7/12

6)x = -1/2 +3/4

   x= 1/4

7) x/15 = 3/5 + -2/3

   x:15  = -1/15

  x        = -1/15. 15

  x        = -1

8)11/8 + 13/6 = 85/x  

       85/24      = 85/x

  ⇒      x           = 24

9) x - 7/8 = 13/12

   x          = 13/12 + 7/8

   x          = 47/24

10)x - -6/15 = 4/27  

     x            = 4/27 + (-6/15)

    x             = -34/135

11) -(-6/12)+x = 9/48

                    x= 9/48 - 6/12

                    x = -5/16

12) x - 4/6 = 5/25 + -7/15

      x -4/6  =  -4/15

     x           = -4/15 + 4/6

    x             = 2/5

1 tháng 7 2023

`1/2-(1/3+3/4)<=x<=1/24-(1/8-1/3)`

`<=>6/12-4/12-9/12<=x<=1/24-3/24+8/24`

`<=>-7/12<=x<=1/4`

`<=>-14/24<=x<=3/12`

`=>-14<=x<=3`

`=>x\in{-14;-13;-12;...;3}` do `x\inZZ`

1 tháng 7 2023

Mình cảm ơn ạ!