Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 333^444=(333^4)^111 và 444^333=(444^3)^111
Như vậy ta cần so sánh 333^4 và 444^3:
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó
333^444>444^333
a) \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A=2^1+2^2+2^3+...+2^{2011}\)
\(\Rightarrow2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(\Rightarrow A=2^{2011}-2^0\)
\(\Rightarrow A=2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\) nên \(A=B\)
Vậy A = B
b) Ta có: \(A=2009.2011=2009.\left(2010+1\right)=2009.2010+2009\)
\(B=2010^2=\left(2009+1\right).2010=2009.2010+2010\)
Vì \(2009.2010+2009< 2009.2010+2010\) nên A < B
Vậy A < B
\(A=2^0+2^1+2^2+2^3+....+2^{2010}\)
\(2.A=2\left(2^0+2^1+2^2+2^3+....+2^{2010}\right)\)
\(2.A=2.2^0+2.2+2.2^2+2.2^3+....+2.2^{2010}\)
\(2.A=2+2^2+2^3+2^4+....+2^{2011}\)
\(2A-A=\left(2+2^2+2^3+2^4+....+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+....+2^{2010}\right)\)
\(A=\left(2-2^1\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+....+\left(2^{2010}-2^{2010}\right)+2^{2011}-2^0\)
\(A=0+0+0+....+0+2^{2011}-2^0\)
\(A=2^{2011}-2^0\)
\(A=2^{2011}-1\)
Vì \(A=2^{2011}-1\) ; \(B=2^{2011}-1\)
\(=>A=B\)
Vậy \(A=B\)
b) \(A=2009.2001\)
\(A=\left(2010-1\right)\left(2010+1\right)\)
\(A=\left(2010-1\right).2010+\left(2010-1\right).1\)
\(A=2010.2010-2010.1+1.2010-1.1\)
\(A=2010^2-2010+2010-1\)
\(A=2010^2+0-1\)
\(A=2010^2-1\)
Vì \(A=2010^2-1\) ; \(B=2010^2\)
\(=>A< B\)
Vậy \(A< B\)
a) \(A=2^0+2^1+2^2+...+2^{2010}\)
\(2A=2^1+2^2+2^3+...+2^{2011}\)
\(2A-A=2^1+2^2+2^3+...+2^{2011}-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(A=2^{2011}-2^0=2^{2011}-1=B\)
Vây A = B
b) Ta có:
\(A=2009.2011=\left(2010-1\right)\left(2010+1\right)\)
Nhân các số hạng với nhau:
\(A=2010^2-2010+2010-1=2010^2-1< 2010^2=B\)
Vậy: A < B
c) \(\hept{\begin{cases}A=10^{30}=2^{30}.5^{30}\\B=2^{100}=2^{30}.2^{70}\end{cases}}\)
Xét 2 số 530 và 270
\(\hept{\begin{cases}5^{30}=\left(5^3\right)^{10}=125^{10}\\2^{70}=\left(2^7\right)^{10}=128^{10}\end{cases}\Rightarrow5^{30}< 2^{70}\Rightarrow A< B}\)
a, \(A=2^0+2^1+2^2+...+2^{2010}\)
\(=>2A=2^1+2^2+2^3+...+2^{2011}\)
\(=>2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(=>2A=2^{2011}-2^0=2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)
\(=>A=B\)
a) Ta có : A=1+2+22+...+22010
2A=2+22+23+...+22011
\(\Rightarrow\) 2A-A=(2+22+23+...+22011)-(1+2+22+...+22010)
\(\Rightarrow\) A=22011-1
Mà B=22011-1
\(\Rightarrow\)A=B
Vậy A=B.
b) Ta có : A=2009.2011
B=20102=2010.2010
\(\Rightarrow\)A=2009.2010+2009
B=2009.2010+2010
Vì 2009<2010 nên 2009.2010+2009<2009.2010+2010
hay A<B
Vậy A<B.
\(\dfrac{2011x2010-1}{2009x2011+2010}\)
=\(\dfrac{2011x\left(2009+1\right)-1}{2009x2011+2010}\)
\(=\dfrac{2011x2009+2011-1}{2011x2009+2010}\)
=\(\dfrac{2011x2009+2010}{2011x2009+2010}\)
=
Học tốt :>
ôi bn ơi