Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{1}{2013}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{\left(\dfrac{2012}{2}+1\right)+\left(\dfrac{2011}{3}+1\right)+...+\left(\dfrac{1}{2013}+1\right)+\dfrac{2014}{2014}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{2014\left(\dfrac{1}{2}+\dfrac{1}{.3}+...+\dfrac{1}{2014}\right)}\)
\(=\dfrac{1}{2014}\)
Ta có : 2009/2010 < 1
2010/2011 < 1
2011/2012 < 1
2012/2013 < 1
Cộng vế trái của 4 bpt và vế phải của bpt ta có :
2009/2010 + 2010/2011 + 2011/2012 + 2012/2013 < 4 ( đpcm )
bạn tham khảo:
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
\(P>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
\(P>\frac{2010+2011+2012}{2011+2012+2013}\)
\(P>Q\)
\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
Ta có: \(\dfrac{2010}{2011+2012+2013}< \dfrac{2010}{2011}\)
\(\dfrac{2011}{2011+2012+2013}< \dfrac{2011}{2012}\)
\(\dfrac{2012}{2011< 2012< 2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(P>Q\)