K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

Ta có Đặt B = \(\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}\)(1999 số hạng)                                 

\(=\left(1+1+1+...+1\right)+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}\)(1999 số hạng 1)            

\(=1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+...+\left(\frac{1}{1999}+1\right)\)(1998 cặp số)

 = \(\frac{2000}{2}+\frac{2000}{3}+...+\frac{2000}{1999}+\frac{2000}{2000}\)

\(2000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1999}+\frac{1}{2000}\right)\)

Khi đó \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}=\frac{1}{2000}\)

10 tháng 1 2017

bạn theo link: http://h.vn/hoi-dap/question/161130.html

6 tháng 3 2017

-1/2000

     1/2000*1999 - 1/1999*1998 - 1/1998*1997 - ... - 1/2*1

  = 1/1999 - 1/2000 - (1/1998 - 1/1999) - (1/1997 - 1/1998) - ... - (1 - 1/2)

 = 1/1999 - 1/2000 - 1/1998 + 1/1999 - 1/1997 +1/1998 - .... - 1 + 1/2

 = 1/1999 + 1/1999 - 1/2000  - 1/1998 + 1/1998 - 1/1997 +1/1997 - .... - 1/2 +1/2 - 1

 = 1/1999 + 1/1999 - 1/2000 - 1 

 = 2/1999 - 1 - 1/2000 

= -1997/1999 - 1/2000

= -2000 - 1997/1997*2000

=-3997/3994000

21 tháng 10 2017

\(D=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{1998.1997}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(D=\dfrac{1}{1999.2000}-\left(\dfrac{1}{1998.1999}+\dfrac{1}{1997.1998}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)\(D=\dfrac{1}{1999.2000}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{1997.1998}+\dfrac{1}{1998.1999}+\dfrac{1}{1999.2000}\right)\)

\(D=\dfrac{1}{1999.2000}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{1997}-\dfrac{1}{1998}+\dfrac{1}{1998}-\dfrac{1}{1999}+\dfrac{1}{1999}-\dfrac{1}{2000}\right)\)\(D=\dfrac{1}{1999.2000}-\dfrac{1999}{2000}\)

24 tháng 10 2017

ed aakrta9 rf, j,ear ,eru8refj eru jrae ear9ffnxvn 

3 tháng 8 2023

So sánh

\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\) ; \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)

Ta có: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>1\) ( vì tử > mẫu )

Do đó: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>\dfrac{1999^{2000}+1+1998}{1999^{1999}+1+1998}=\dfrac{1999^{2000}+1999}{1999^{1999}+1999}=\dfrac{1999.\left(1999^{1999}+1\right)}{1999.\left(1999^{1998}+1\right)}=\dfrac{1999^{1999}+1}{1999^{1998}+1}=A\)

Vậy B > A

Chúc bạn học tốt

31 tháng 7 2015

Án vào đây 

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

31 tháng 7 2023

S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002

S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002

S=1+0+0...+0+2002

S= 1+2002

S=2003

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:

$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$

$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$

$=(-4).500+2001+2002=2003$