Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S = ( 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/2017.2018 )
Đặt A = ( 1/1.2 + 1/3.4 + ... + 1/2017.2018)
= 1 - 1/2 + 1/3 - 1/4 + ... + 1/2017 - 1/2018
= ( 1 + 1/3 + ... + 1/2017 ) - ( 1/2 + 1/4 + ... + 1/2018 )
= ( 1 + 1/2 + ... + 1/2018 ) - 2 ( 1/2 + 1/4 + ... + 1/2018) )
= ( 1 + 1/2 + ... + 1/2018 ) - ( 1 + 1/2 + ... + 1/1009 )
= 1/1010 + 1/1011 + ... + 1/2018
=> A - ( 1/1010 + 1/1011 + ... + 1/2017 ) = 1/2018
=> S = 1/2018
Vậy S = 1/2018
a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)
b, c cùng 1 câu phải k
ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)
\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)
A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)
NHA
HỌC TỐT
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\)
b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)
\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)
\(\Rightarrow2B< 1\)
\(\Rightarrow B< \frac{1}{2}\)
\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-2.\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)
\(S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=P-1\)
\(\Rightarrow\left(S-P\right)^{2018}=\left(P-1-P\right)^{2018}=\left(-1\right)^{2018}=1\)
Ta có:
\(\Rightarrow A=B.\)
\(\Rightarrow A^{2017}=B^{2017}\)
\(\Rightarrow\left(A^{2017}-B^{2017}\right)^{2018}=\left(B^{2017}-B^{2017}\right)^{2018}=0^{2018}=0.\)
Vậy \(\left(A^{2017}-B^{2017}\right)^{2018}=0.\)
Chúc bạn học tốt!
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2018}+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}=N\)
\(\Rightarrow M-N=0\Rightarrow\left(M-N\right)^2=0\)
\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)x<\frac{13}{7}\)
\(\left(1-\frac{1}{7}\right).x<\frac{13}{7}\)
\(\frac{6}{7}.x<\frac{13}{7}\Leftrightarrow6x<13\Leftrightarrow x<2,1\left(6\right)\)
x nguyên dương => x thuộc {1;2}
Vậy tập hợp có 2 phần tử