K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

Đặt S = ( 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/2017.2018 )

Đặt A = ( 1/1.2 + 1/3.4  + ... + 1/2017.2018)

= 1 - 1/2 + 1/3 - 1/4  + ... + 1/2017  - 1/2018

= ( 1 + 1/3 + ... + 1/2017 ) - ( 1/2 + 1/4 + ... + 1/2018 )

= ( 1 + 1/2 + ... + 1/2018 ) - 2 ( 1/2 + 1/4 + ... + 1/2018) )

= ( 1 + 1/2 + ... + 1/2018 ) - ( 1 + 1/2 + ... + 1/1009 )

= 1/1010 + 1/1011 + ... + 1/2018

=> A - ( 1/1010 + 1/1011 + ... + 1/2017 ) = 1/2018

=> S = 1/2018

Vậy S = 1/2018

9 tháng 4 2020

thanks bạn nhiều

11 tháng 12 2019

giúp mk vs mn ơi. mình cần gấp chiều mai nộp òi

12 tháng 7 2018

a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)

b, c cùng 1 câu phải k

ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)

\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)

15 tháng 7 2018

A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)

NHA

HỌC TỐT

23 tháng 8 2019

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

23 tháng 8 2019

b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)

\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

NV
11 tháng 4 2019

\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-2.\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)

\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)

\(S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=P-1\)

\(\Rightarrow\left(S-P\right)^{2018}=\left(P-1-P\right)^{2018}=\left(-1\right)^{2018}=1\)

1 tháng 11 2019

Ta có:

\(\Rightarrow A=B.\)

\(\Rightarrow A^{2017}=B^{2017}\)

\(\Rightarrow\left(A^{2017}-B^{2017}\right)^{2018}=\left(B^{2017}-B^{2017}\right)^{2018}=0^{2018}=0.\)

Vậy \(\left(A^{2017}-B^{2017}\right)^{2018}=0.\)

Chúc bạn học tốt!

5 tháng 11 2019

\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{2018}+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}=N\)

\(\Rightarrow M-N=0\Rightarrow\left(M-N\right)^2=0\)

8 tháng 3 2020

best suarez    làm đúng rồi

26 tháng 11 2015

 

\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)x<\frac{13}{7}\)

\(\left(1-\frac{1}{7}\right).x<\frac{13}{7}\)

\(\frac{6}{7}.x<\frac{13}{7}\Leftrightarrow6x<13\Leftrightarrow x<2,1\left(6\right)\)

x nguyên dương => x thuộc {1;2}

Vậy tập hợp có 2 phần tử

29 tháng 11 2016

vay tap hop co 2 phan tu