Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{200}-\frac{1}{200.199}-\frac{1}{199.198}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{200}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{198.199}+\frac{1}{199.200}\right)\)
\(=\frac{1}{200}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{198}-\frac{1}{199}+\frac{1}{199}-\frac{1}{200}\right)\)
\(=\frac{1}{200}-\left(1+\frac{1}{200}\right)\)
\(=\left(\frac{1}{200}-\frac{1}{200}\right)-1\)
\(=0-1\)
\(=-1\)
link nè bạn
/hoi-dap/question/88514.html
hoặc bạn sang trang 3 của hỏi đáp toán hoc24 sẽ thấy nhé
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}+......+\frac{1}{2.1}\)
= \(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}\right)\)
= \(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}\right)\)
= \(\frac{1}{99}-\left(1-\frac{1}{99}\right)\)
= \(\frac{1}{99}-\frac{98}{99}\)
= \(\frac{-97}{99}\)
\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}+\frac{1}{2013.2014}\right)+\frac{1}{2014}\)
\(=\frac{1}{2014}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=\frac{1}{2014}-1+\frac{1}{2014}=\frac{1}{1007}-1=\frac{-1006}{1007}\)
....
\(a)\) \(A=\frac{1}{199}-\frac{1}{199.198}-\frac{1}{198.197}-\frac{1}{197.196}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{199}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{197.198}+\frac{1}{198.199}\right)\)
\(A=\frac{1}{199}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{197}-\frac{1}{198}+\frac{1}{198}-\frac{1}{199}\right)\)
\(A=\frac{1}{199}-\left(1-\frac{1}{199}\right)\)
\(A=\frac{1}{199}-1+\frac{1}{199}\)
\(A=\frac{-197}{199}\)
Chúc bạn học tốt ~