K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

Câu này mk giải rùi mà

11 tháng 9 2016

link nè bạn 

/hoi-dap/question/88514.html

hoặc bạn sang trang 3 của hỏi đáp toán hoc24 sẽ thấy nhé

22 tháng 6 2019
https://i.imgur.com/izuVCiV.jpg
22 tháng 6 2019

Bài 1:

a) \(\left(\frac{5}{19}-\frac{1}{511}+\frac{7}{12}\right)-\left(-\frac{1}{511}-\frac{1}{2}+\frac{5}{19}\right)\)

= \(\frac{5}{19}-\frac{1}{511}+\frac{7}{12}+\frac{1}{511}+\frac{1}{2}-\frac{5}{19}\)

= \(\left(\frac{5}{19}-\frac{5}{19}\right)+\left(\frac{1}{511}-\frac{1}{511}\right)+\left(\frac{7}{12}+\frac{1}{2}\right)\)

= 0 + 0 + \(\frac{13}{12}\)

= \(\frac{13}{12}\).

b) \(-\left(\frac{13}{25}-\frac{4}{191}+\frac{2}{51}\right)+\left(\frac{4}{191}+\frac{2}{51}+\frac{3}{5}\right)\)

= \(-\frac{13}{25}+\frac{4}{191}-\frac{2}{51}+\frac{4}{191}+\frac{2}{51}+\frac{3}{5}\)

= \(\left(-\frac{13}{25}+\frac{3}{5}\right)+\left(\frac{4}{191}+\frac{4}{191}\right)+\left(\frac{2}{51}-\frac{2}{51}\right)\)

= \(\frac{2}{25}+\frac{8}{191}+0\)

= \(\frac{582}{4775}\).

Mình chỉ làm câu a) và câu b) thôi nhé.

Chúc bạn học tốt!

11 tháng 9 2016

\(\frac{1}{200}-\frac{1}{200.199}-\frac{1}{199.198}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{200}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{198.199}+\frac{1}{199.200}\right)\)

\(=\frac{1}{200}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{198}-\frac{1}{199}+\frac{1}{199}-\frac{1}{200}\right)\)

\(=\frac{1}{200}-\left(1+\frac{1}{200}\right)\)

\(=\left(\frac{1}{200}-\frac{1}{200}\right)-1\)

\(=0-1\)

\(=-1\)

30 tháng 8 2019

Ta có : 

\(A=\frac{1}{2003\cdot2002}-\frac{1}{2002\cdot2001}-...-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)

\(A=-\left(\frac{1}{2003\cdot2002}+\frac{1}{2002\cdot2001}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)

\(A=-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2001\cdot2002}+\frac{1}{2002\cdot2003}\right)\)

\(A=-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2003}\right)\)

\(A=-\left(1-\frac{1}{2003}\right)\)

\(A=-\frac{2002}{2003}\)

30 tháng 8 2019

\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2001.2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)

\(=-\left(1-\frac{1}{2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)

\(=-1+\frac{1}{2002}.+\frac{1}{2002}.\frac{1}{2003}\)

\(=-1+\frac{1}{2002}\left(1+\frac{1}{2003}\right)\)

\(=-1+\frac{1}{2002}.\frac{2004}{2003}\)

\(=-1+\frac{2}{2003}\)

\(=\frac{-2003+2}{2003}\)

\(=\frac{-2001}{2003}\)

1 tháng 7 2018

\(a)\) \(A=\frac{1}{199}-\frac{1}{199.198}-\frac{1}{198.197}-\frac{1}{197.196}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(A=\frac{1}{199}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{197.198}+\frac{1}{198.199}\right)\)

\(A=\frac{1}{199}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{197}-\frac{1}{198}+\frac{1}{198}-\frac{1}{199}\right)\)

\(A=\frac{1}{199}-\left(1-\frac{1}{199}\right)\)

\(A=\frac{1}{199}-1+\frac{1}{199}\)

\(A=\frac{-197}{199}\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

làm hộ mk lun câu b ik

12 tháng 7 2016

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(\frac{1}{1}-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{-98}{100}=\frac{-49}{50}\)

15 tháng 4 2019

\(\frac{1}{\left(a+1\right)a}=\frac{1}{a}-\frac{1}{a+1}\)   
Áp dụng đẳng thức trên ta tính ĐƯỢC:
 A= 1/100-(1/99-1/100+1/98-1/99+...+1/2-1/3+1/1-1/2)
   =1/100-(-1/100+1)

   =1/50+1=51/50

15 tháng 4 2019

\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(A=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(A=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{100}-\frac{99}{100}\)

\(A=\frac{-98}{100}=-\frac{49}{50}\)

17 tháng 3 2020

A=1/2015-1/2015.2014-....-1/3.2-1/2.1

A=1/2015-[1/2015.2014+1/2014.2013+....+1/3.2+1/2.1]

A=1/2015-[1/1.2+1/2.3+....1/2014.2015]

A=1/2015-[1-1/2+1/2-1/3+...+1/2014-1/2015]

A=1/2015-[1-2015]

A=1/2015-1+1/2015

A=[1/2015+1/2015]-1

A=2/2015-1

A=-2013/2015