K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7

Lời giải:

$9< x^2< 99$. Mà $x$ nguyên nên $x^2$ là số chính phương.

$\Rightarrow x^2\in \left\{16; 25; 36; 49; 64; 81\right\}$

$\Rightarrow x_{\min}=-9; x_{\max}=9$

Hiệu giữa số $x$ lớn nhất và nhỏ nhất là: $9-(-9)=18$

 

27 tháng 2 2017

Mình không biết

27 tháng 2 2017

chị ơi kb với em nha ^ ^

11 tháng 1 2021

23 tháng 6 2018

- Lập bảng giá trị:

x -4 -2 0 2 4
y = -0,75x2 -12 -3 0 -3 -12

- Vẽ đồ thị:

Giải bài 10 trang 39 SGK Toán 9 Tập 2 | Giải toán lớp 9

- Quan sát đồ thị hàm số y = -0,75x2:

Khi x tăng từ -2 đến 4, y tăng từ -3 đến 0 rồi lại giảm xuống -12.

Vậy: Giá trị nhỏ nhất của y = -12 đạt được khi x = 4

Giá trị lớn nhất của y = 0 đạt được khi x = 0.

3 tháng 1 2020

- Lập bảng giá trị:

x -4 -2 0 2 4
y   =   - 0 , 75 x 2 -12 -3 0 -3 -12

- Vẽ đồ thị:

Giải bài 10 trang 39 SGK Toán 9 Tập 2 | Giải toán lớp 9

- Quan sát đồ thị hàm số  y   =   - 0 , 75 x 2 :

Khi x tăng từ -2 đến 4, y tăng từ -3 đến 0 rồi lại giảm xuống -12.

Vậy: Giá trị nhỏ nhất của y = -12 đạt được khi x = 4

Giá trị lớn nhất của y = 0 đạt được khi x = 0.

24 tháng 5 2021

\(x^2+y^2+xy=3\)

Có \(x^2+y^2\ge2xy\) \(\Rightarrow3=x^2+y^2+xy\ge2xy+xy\) \(\Leftrightarrow xy\le1\)

\(x^2+y^2\ge-2xy\) \(\Rightarrow3=x^2+y^2+xy\ge-2xy+xy\) \(\Leftrightarrow-3\le xy\) 

Đặt A= \(x^2+y^2-xy=\left(3-xy\right)-xy=3-2xy\)

mà \(-3\le xy\le1\) \(\Rightarrow9\ge3-2xy\ge1\)

=> minA=1 <=> \(\left\{{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\) <=>x=y=1

maxA=9 <=>\(\left\{{}\begin{matrix}xy=-3\\x=-y\end{matrix}\right.\) <=>\(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

NV
24 tháng 5 2021

Đặt \(P=x^2+y^2-xy\)

\(\Rightarrow\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}\)

\(\dfrac{P}{3}=\dfrac{3x^2+3y^2-3xy}{3\left(x^2+y^2+xy\right)}=\dfrac{x^2+y^2+xy+2\left(x^2+y^2-2xy\right)}{3\left(x^2+y^2+xy\right)}\)

\(\dfrac{P}{3}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\Rightarrow P\ge1\)

\(P_{min}=1\) khi \(x=y=1\)

\(\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow P\le9\)

\(P_{max}=9\) khi \(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

21 tháng 3 2020

\(P=\sqrt{x+1}+\sqrt{y+1}\ge\sqrt{x+1+y+1}=\sqrt{x+y+2}=\sqrt{101}\)

GTNN\(P=\sqrt{101}\)

\(P=\sqrt{x+1}+\sqrt{y+1}\)

\(=>\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\le2\left(x+1+y+1\right)=2.101=202\)

GTLN \(P=202\)