K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2015

=3.(1/1.2+1/2.3+...+1/299.300)

=3.(1-1/2+1/2-1/3+...+1/299-1/300)

=3.(1-1/300)

=3.299/300

=299/100

9 tháng 3 2017

1/6 nhe

9 tháng 3 2017

\(=\frac{1}{6}\)

17 tháng 3 2019

Dii vào link nào nha : https://loga.vn/hoi-dap/tinh-tong-s-3-1-2-3-2-3-3-3-4-3-4-5-3-2015-20161-tinh-tong-s-dfrac-3-1-2-dfrac-3-2-3-dfrac-3-3-4-17371 

k mk

5 tháng 5 2019

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}\)

\(A=\frac{5}{6}\)

5 tháng 5 2019

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}\)

\(A=\frac{5}{6}\)

\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)

\(B=\frac{100}{2}\)

3 tháng 5 2018

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

                                                                     \(=1-\frac{1}{6}\)

                                                                     \(=\frac{5}{6}\)

3 tháng 5 2018

1/1.2+1/2.3+1/3.4+1/4.5+1/5.6

=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6

=1-1/6

=5/6

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Lời giải:

\(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2020}\)

\(\Rightarrow 2B=\frac{2}{1.2}+\frac{2}{3.4}+\frac{2}{5.6}+....+\frac{2}{2019.2020}\)

\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)

\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)

\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\( 2B< 1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)

\(B< \frac{3}{4}\)

---------------------

Đặt \(2^{2018}=a; 3^{2019}=b; 5^{2020}=c(a,b,c>0)\)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}> \frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(\Rightarrow A>1> \frac{3}{4}> B\)

15 tháng 5 2019

thầy giải hay quá

20 tháng 7 2017

Đặt Q = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{997.998}+\frac{1}{999.1000}\)

Đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{997.999}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{997}-\frac{1}{999}\)

\(2A=1-\frac{1}{999}\)

\(2A=\frac{998}{999}\)

\(\Leftrightarrow A=\frac{499}{999}\)

Đặt B = \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{998.1000}\)

\(2B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{998}-\frac{1}{1000}\)

\(2B=\frac{1}{2}-\frac{1}{1000}\)

\(B=\frac{499}{1000}\)

Vậy Q = A + B = \(\frac{499}{999}+\frac{499}{1000}\)