Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)
\(A=2.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=2.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(A=2\cdot\frac{4949}{9900}=\frac{4949}{4950}\)
2A=2(1/1.2.3+1/2.3.4+...+1/98.99.100)
2A=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-...+1/98.99-1/99.100
2A=1/1.2-1/99.100
2A=4949/9900
A=4949/9900:2
A=4949/19800
Vậy A=4949/198000
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)
\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(2A=\frac{1}{2}-\frac{1}{99.100}=\frac{49}{99.100}\Rightarrow A=\frac{49}{2.99.100}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{98.99.100}=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{k}=\frac{1}{2}\Rightarrow k=2\)
cách làm như sau
\(C=\frac{2}{2}.\left[\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}\right]\)
\(C=1\left[\frac{1}{2}-\frac{1}{9900}\right]\)
\(C=\frac{4949}{9900}\)
Tính:
S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+\frac{1}{4.5.6}+...+\frac{1}{98.99.100}\)
\(2S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(2S=\frac{1}{2}-\frac{1}{9900}\)
\(2S=\frac{4949}{9900}\)
\(S=\frac{4949}{19800}\)
Ta xét : \(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3}\)
\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)
...
\(\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)
Ta có : 2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
=> 2S = \(\frac{1}{1.2}-\frac{1}{99.100}\)
=> 2S = \(\frac{4949}{9900}\)
=> S = \(\frac{4949}{19800}\)
\(A=\frac{11}{1.2.3}+\frac{11}{2.3.4}+\frac{11}{3.4.5}+...+\frac{11}{98.99.100}\)
\(A=\frac{11}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{11}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{11}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{11}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)=\frac{11}{2}.\left(\frac{4950}{9900}-\frac{1}{9900}\right)=\frac{11}{2}.\frac{4949}{9900}=\frac{4949}{1800}\)
A=1/1.2.3+1/2.3.4+...+1/98.99.100
2A=2/1.2.3+2/2.3.4+...+2/98.99.100
2A=1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100
2A=1/1.2-1/99.100
2A=1/2-1/9900
2A=4949/9900
A=4949/19800
A=1/1.2.3+1/2.3.4+...+1/98.99.100
2A=2/1.2.3+2/2.3.4+...+2/98.99.100
2A=1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100
2A=1/1.2-1/99.100
2A=1/2-1/9900
2A=4949/9900
A=4949/19800