Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
\(C=\frac{2x^3-5x+3}{2x-1}=\frac{\left(2x^3-2x\right)-\left(3x-3\right)}{2x-1}=\frac{2x\left(x^2-1\right)-3\left(x-1\right)}{2x-1}\)
\(=\frac{2x\left(x-1\right)\left(x+1\right)-3\left(x-1\right)}{2x-1}=\frac{\left(x-1\right)\left(2x^2+2x-3\right)}{2x-1}\)
Có: \(x=\left|\frac{3}{2}\right|=\frac{3}{2}\) thì
\(C=\frac{\left(\frac{3}{2}-1\right)\left(2\cdot\frac{3^2}{2^2}+2\cdot\frac{3}{2}-3\right)}{2\cdot\frac{3}{2}-1}=\frac{\frac{1}{2}\cdot\frac{9}{2}}{2}=\frac{9}{4}\cdot\frac{1}{2}=\frac{9}{8}\)
Vì giá trị tuyệt đối của x bằng \(\frac{1}{3}\)
nên x có thể bằng 1/3 hoặc -1/3
TH1: x=\(\frac{1}{3}\)
\(A=2x\left(\frac{1}{3}\right)^2-5x\frac{1}{3}+1\)
\(A=\frac{2}{9}-\frac{5}{3}+1\)
\(A=\frac{-13}{9}+1=\frac{-4}{9}\)
TH2:x\(=\frac{-1}{3}\)
\(A=2x\left(\frac{-1}{3}\right)^2-5x\left(\frac{-1}{3}\right)+1\)
\(A=\frac{2}{9}-\frac{-5}{3}+1\)
\(A=\frac{17}{9}+1\)
\(A=\frac{26}{9}\)
sorry anh nha
em ko lm đc
tại em mới lớp 6
thông cảm
chúc anh HT
thay x=|3/2\ vào C ta có
C=\(2\left|\frac{3}{2}\right|^2-5\left|\frac{3}{2}\right|+\frac{3}{2.\left|\frac{3}{2}\right|-1}\)
C=\(\frac{2.9}{4}-\frac{15}{2}+\frac{3}{2}\)
C=\(\frac{9}{2}-\frac{15}{2}+\frac{3}{2}=-\frac{3}{2}\)
Lê Tuấn Nghĩa có vẻ như bạn có gì đó sai sai thì phải!Sách nâng cao của mình hướng dẫn bài này là phải áp dụng định nghĩa: \(\left|x\right|=\hept{\begin{cases}x..if..x\ge0\\-x..if..x< 0\end{cases}}\) chứ!Khi đó lời giải như sau: (mình giải sơ thôi nhé,bận rồi)
Với \(x\ge0\Rightarrow\left|x\right|=\frac{3}{2}\Leftrightarrow x=\frac{3}{2}\).Thay vào tính C
Với \(x< 0\Rightarrow\left|x\right|=\frac{3}{2}\Leftrightarrow x=-\frac{3}{2}\).Thay vào tính C
Do đó ta sẽ có hai kết quả ...