Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{{ - 3}}{7}.\frac{2}{5} + \frac{2}{5}.\left( { - \frac{5}{{14}}} \right) - \frac{{18}}{{35}}\)
\(\begin{array}{l} = \frac{2}{5}.\left( {\frac{{ - 3}}{7} + \frac{{ - 5}}{{14}}} \right) - \frac{{18}}{{35}}\\ = \frac{2}{5}.\left( {\frac{{ - 6}}{{14}} + \frac{{ - 5}}{{14}}} \right) - \frac{{18}}{{35}}\\ = \frac{2}{5}.\frac{{ - 11}}{{14}} - \frac{{18}}{{35}} = \frac{{ - 11}}{{35}} - \frac{{18}}{{35}} = \frac{{ -29}}{{35}}\end{array}\)
b) \(\left( {\frac{2}{3} - \frac{5}{{11}} + \frac{1}{4}} \right):\left( {1 + \frac{5}{{12}} - \frac{7}{{11}}} \right)\)
\(\begin{array}{l} = \left( {\frac{{2.11.4}}{{3.11.4}} - \frac{{5.3.4}}{{11.3.4}} + \frac{{1.3.11}}{{4.3.11}}} \right):\left( {\frac{11.12}{11.12} + \frac{{5.11}}{{12.11}} - \frac{{7.12}}{{11.12}}} \right)\\ = \left( {\frac{{88 - 60 + 33}}{{121}}} \right):\left( { \frac{{121+55 - 84}}{{121}}} \right)\\ = \frac{{61}}{{121}}:\frac{{92}}{{121}} = \frac{{61}}{{121}}.\frac{{121}}{{92}}= \frac{{61}}{{92}}\end{array}\)
c) \(\left( {13,6 - 37,8} \right).\left( { - 3,2} \right)\)
\( = \left( { - 24,2} \right).\left( { - 3,2} \right) = 77,44\)
d) \(\left( { - 25,4} \right).\left( {18,5 + 43,6 - 16,8} \right):12,7\)
\(\begin{array}{l} = \left( { - 25,4} \right).\left( {62,1 - 16,8} \right):12,7\\ = \left( { - 25,4} \right).45,3:12,7\\ = \left( { - 25,4} \right):12,7.45,3\\ = (- 2).45,3 = - 90,6\end{array}\)
a: \(=\dfrac{2}{5}\cdot\left(-\dfrac{3}{7}-\dfrac{5}{14}\right)-\dfrac{18}{35}\)
\(=\dfrac{2}{5}\cdot\dfrac{-6-5}{14}-\dfrac{18}{35}\)
\(=\dfrac{2}{5}\cdot\dfrac{-11}{14}-\dfrac{18}{35}=-\dfrac{22}{70}-\dfrac{18}{35}=\dfrac{-58}{70}=-\dfrac{29}{35}\)
b: \(=\dfrac{88-60+33}{132}:\dfrac{132+55-84}{132}\)
\(=\dfrac{61}{132}\cdot\dfrac{132}{103}=\dfrac{61}{103}\)
c: \(=-24.2\cdot\left(-3.2\right)=24.2\cdot3.2=77.44\)
d: \(=\dfrac{-25.4}{12.7}\cdot45.3=-2\cdot45.3=-90.6\)
Ta có: \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(\Leftrightarrow A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\Rightarrow2A=1-\frac{1}{11}=\frac{10}{11}\)
\(\Rightarrow A=\frac{10}{11}:2=\frac{5}{11}\)
Vậy \(A=\frac{5}{11}\)
A = \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
A = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
A = \(1-\frac{1}{11}\)
A = \(\frac{10}{11}\)
a) Cách 1:
\(\begin{array}{l}\left( {\frac{{ - 2}}{{ - 5}} + \frac{{ - 5}}{{ - 6}}} \right) + \frac{4}{5} = \frac{2}{5} + \frac{5}{6} + \frac{4}{5}\\ = \frac{{12}}{{30}} + \frac{{25}}{{30}} + \frac{{24}}{{30}} = \frac{{61}}{{30}}\end{array}\)
Cách 2:
\(\begin{array}{l}\left( {\frac{{ - 2}}{{ - 5}} + \frac{{ - 5}}{{ - 6}}} \right) + \frac{4}{5} = \left( {\frac{2}{5} + \frac{4}{5}} \right) + \frac{5}{6}\\ = \frac{6}{5} + \frac{5}{6} = \frac{{36}}{{30}} + \frac{{25}}{{30}} = \frac{{61}}{{30}}\end{array}\)
b) Cách 1:
\(\begin{array}{l}\frac{{ - 3}}{{ - 4}} + \left( {\frac{{11}}{{ - 15}} + \frac{{ - 1}}{2}} \right) = \frac{3}{4} + \frac{{ - 11}}{{15}} + \frac{{ - 1}}{2}\\ = \frac{{45}}{{60}} + \frac{{ - 44}}{{60}} + \frac{{ - 30}}{{60}}\\ = \frac{{ - 29}}{{60}}\end{array}\).
Cách 2:
\(\begin{array}{l}\frac{{ - 3}}{{ - 4}} + \left( {\frac{{11}}{{ - 15}} + \frac{{ - 1}}{2}} \right) = \frac{3}{4} + \frac{{ - 11}}{{15}} + \frac{{ - 1}}{2}\\ = \left( {\frac{3}{4} + \frac{{ - 1}}{2}} \right) + \frac{{ - 11}}{{15}}\\ = \left( {\frac{3}{4} + \frac{{ - 2}}{4}} \right) + \frac{{ - 11}}{{15}}\\ = \frac{1}{4} + \frac{{ - 11}}{{15}}\\ = \frac{{15}}{{60}} + \frac{{ - 44}}{{60}}\\ = \frac{{ - 29}}{{60}}\end{array}\)
\(A=1-\frac{1}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{195}+\frac{2}{255}\\ A=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{195}+\frac{2}{255}\\ A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{13\cdot15}+\frac{2}{15\cdot17}\\ A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}\\ A=1-\frac{1}{17}=\frac{16}{17}\)