K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

C1 : Nếu bạn học casio thì dùng như sau: dùng xích ma nhập \(\left(-1\right)^{x+1}.x^2\) rồi cho x chạy từ 1 đến 2017

Cách 2:

\(M=1^2-2^2+3^2-4^2+.....-2016^2+2017^2\)

\(M=\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2017^2-2016^2\right)+1^2\)

\(M=\left(3-2\right)\left(3+2\right)+\left(5-4\right)\left(5+4\right)+...+\left(2017-2016\right)\left(2017+2016\right)+1\)

\(M=1+5+9+...+4033=\left(\frac{4033+1}{2}\right).\left(\frac{4033-1}{4}+1\right)=2035153\)

27 tháng 12 2016

xích ma nhập là cái j z, tên mắc cười quá

4 tháng 10 2016

giải đc chết liền

15 tháng 1 2017

\(M=1^2-2^2+3^2-4^2+...-2016^2+2017^2\)

\(=\left(2017^2-2016^2\right)+...+\left(3^2-2^2\right)+1^2\)

\(=\left(2017-2016\right)\left(2017+2016\right)+...+\left(3-2\right)\left(3+2\right)+1\)

\(=2017+2016+...+3+2+1\)

\(=\frac{2017\cdot\left(2017+1\right)}{2}=2035153\)

15 tháng 1 2017

99/100 đó

24 tháng 12 2016

\(M=\frac{2017.2018}{2}\)

25 tháng 12 2016

Tầm nhìn quá xa

12 tháng 12 2016

(2017^2 - 2016^2)+...........+(5^2 - 4^2)+(3^2 - 2^2)+1^2

áp dụng hằng đẳng thức số 3 ta được:

2017+2016+.......+5+4+3+2+1=2035153

13 tháng 12 2016

M=-2031119

29 tháng 11 2016

2035153

29 tháng 11 2016

Đầu tiên viết M thành:  M= 2017^2 - 2016^2 - ........-4^2 + 3^2 - 2^2 + 1^2

     Sau đó bạn ghép cặp(lưu ý dấu - ngoài ngoặc thì trong ngoặc đổi dấu) 

                          M=(2017^2 - 2016^2) -........--(4^2 - 3^2) - (2^2 - 1^2)

Tiếp đến AD hằng đẳng thức

  Cuối cùng ta được:   4033 - 4029 - 4025 -.......- 3 (k/c là 4 đv)

      AD cách tính tổng của dãy số cách đều để tính

23 tháng 10 2018

\(a^2+b^2+c^2=ab+bc+ac\)

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)

\(\Rightarrow\left(a-b+1\right)^{2018}+\left(b-c-1\right)^{2017}+\left(a-c\right)^{2016}\)

\(=\left(a-a+1\right)^{2018}+\left(c-c-1\right)^{2017}+\left(a-a\right)^{2016}\)

\(=1^{2018}+\left(-1\right)^{2017}+0^{2016}\)

\(=1+\left(-1\right)+0\)

\(=0\)

Vậy......

P.s: các phần thay a=b=c vào biểu thức có thể thay toàn bộ bằng a hoặc bằng b hoặc bằng c đều được nha