Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(1-2-3-4\right)+...+\left(197-198-199-200\right)\)
=-8x25=-200
\(D=-\left(11+13+...+99\right)+\left(10+12+...+98\right)\)
=(-1)+(-1)+...+(-1)
=-1x45=-45
Với x = 8
\(\Rightarrow E=200+\left[5\left(4.8-10\right)+12\right]\)
\(\Rightarrow E=200+\left[5\left(32-10\right)+12\right]\)
\(\Rightarrow E=200+\left[5.22+12\right]\)
=> E = 24400
\(a,A=\left(x+10\right)+\left(2x-15\right)-\left(x-20\right)\)
\(=x+10+2x-15-x+20\)
\(=2x+15\)
\(b,\)Thay \(x=15\)vào biểu thức A = 2x + 15
Ta được : \(A=2\times15+15\)
\(\Rightarrow A=45\)
a) A = (x + 10) + (2x - 15) - (x - 20)
A = x + 10 + 2x - 15 - x + 20
A = x + 10 + 2x + (-15) + (-x) + 20
A = x + (-x) + 2x + 10 + 20 + (-15)
A = 2x + 15
b) x = 15 thì A = 2x + 15 = 2.15 + 15 = 15.3 = 45
a)A= 20-(x+2)-4x+25
Thay số
A= 20-(-2+2)-4.-2+25
= 20-0-4.-2+25
= 20-0-(-8)+25
=20-(-8)+25
=28+25
= 53
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)