Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình k ghi lại đề nhé!~~
\(A=\dfrac{4}{1}.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}\right)\)
\(A=\dfrac{4}{1}.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
\(A=\dfrac{4}{1}.\left(1-\dfrac{1}{2015}\right)\)
\(A=\dfrac{4}{1}.\left(\dfrac{2015-1}{2015}\right)\)
\(A=\dfrac{4}{1}.\dfrac{2014}{2015}\)
\(A=3,998014888\)
\(A\approx4\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}\)
\(A=4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
\(=4\cdot\dfrac{2014}{2015}=\dfrac{8056}{2015}\)
a) A = \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)
A = \(\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}.\dfrac{4.4}{4.5}\)
A = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)= \(\dfrac{1}{5}\)
b) B = \(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)
B = \(\dfrac{2.3.4.5}{1.2.3.4}.\dfrac{2.3.4.5}{3.4.5.6}\)= \(\dfrac{5}{3}\)
\(A=\dfrac{7}{1.2}+\dfrac{7}{2.3}+\dfrac{7}{3.4}+...+\dfrac{7}{2011.2012}\)
\(A=7\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)\)
\(A=7\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)\)
\(A=7\left(1-\dfrac{1}{2012}\right)=7.\dfrac{2011}{2012}=\dfrac{14077}{2012}\)
=5(1-1/2+1/2-1/3+...+1/2023-1/2024)
=5*2023/2024
=10115/2024
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)
\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)
bài 2:
\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=9.\left(1-\dfrac{1}{100}\right)=9.\left(\dfrac{100}{100}-\dfrac{1}{100}\right)=\dfrac{891}{100}\)
bài 3:
\(=>\dfrac{x}{3}=\dfrac{5}{8}+\dfrac{1}{8}=\dfrac{8}{8}=1=\dfrac{3}{3}\)
\(=>x=3\)
\(=4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)=4\cdot\dfrac{2014}{2015}=\dfrac{8056}{2015}\)
\(\dfrac{4}{1.2}+\dfrac{4}{2.3}+...+\dfrac{4}{2014.2015}\\ =4\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}\right)\\ =4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\\ =4\left(1-\dfrac{1}{2015}\right)\\ =4.\dfrac{2014}{2015}\\ =\dfrac{8056}{2015}\)