Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos^4x-\sin^4x=\cos^4x-\left(sin^2x.sin^2x\right)=\cos^4x-\left(1-cos^2x\right)\left(1-cos^2x\right)\)
=\(2cos^2x-1=2cos^2x-sin^2x-cos^2x=cos^2x-sin^2x\)
=> cos x = 3 2 (do x là góc nhọn nên cos x > 0)
Suy ra x = 30 0
Đáp án cần chọn là: B
\(\sqrt[3]{\sin\left(2x\right)}-\cos2x=4\sin x-1\) à hay là \(\sqrt[3]{\sin2x-\cos2x}=4\sin x-1\)
\(\frac{2\cos2x}{1-\sin2x}=0\Leftrightarrow\hept{\begin{cases}\cos2x=0\\1-\sin2x\ne0\end{cases}}\)
\(\cos2x=0\Leftrightarrow2x\pm\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\pm\frac{\pi}{4}+k\pi\)
Với \(x=\frac{\pi}{4}+k\pi\Rightarrow2x=\frac{\pi}{2}+k2\pi\)
\(\sin2x=\sin\left(\frac{\pi}{2}+k2\pi\right)=1\) vi phạm điều kiện \(1-\sin2x\ne0\)
Do đó ta loại nghiệm \(x=\frac{\pi}{4}+k\pi\) của phương trình cos2x = 0
Vậy \(\frac{2\cos2x}{1-\sin2x}=0\Leftrightarrow x=-\frac{\pi}{4}+k\pi,k\in Z\)