Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
f(x)=\(\frac{x^2}{2x-2x^2-1}=\frac{x^2}{-\left(x-1\right)^2-x^2}\)
tiếp tục giờ ta tìm f(1-x) mục đích của việc này là để ghép cặp vì bạn để ý ghép sao cho tổng của tử bằng mẫu. Vây f(1-x)=\(\frac{\left(x-1\right)^2}{-x^2-\left(x-1\right)^2}\)
từ đây suy ra f(x)+f(1-x)= -1( bạn cũng xem lại đề cho mình nha tử là x^2 chứ không phải là 1 )
Giờ ta ghép cặp như sau: ta loại trừ f(\(\frac{1008}{2016}\)) và f(1) ra 1 ở đây mình rút gọn 2016/2016. 2 số này sẽ dùng để thay vào tính: Còn các số còn lại sẽ được ghép làm 1007 cặp mà mỗi cặp bằng -1 do cmt. vậy mình gọi cái cần tính là A thì
=> A=-1.1007-1-0,5=-1008,5
Bạn xem lại hộ xem thử đề đúng không nhé b. Sao không thấy có cơ sở để tính tổng này??
\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)
\(\Rightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=2016-2016\)
\(\Rightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)
\(\Rightarrow\left(x-2017\right).\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+1\right)=0\)
Mà \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+1\ne0\Rightarrow x-2017=0\)
=> x = 2017
\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)
\(\Leftrightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=0\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)
Có: \(\frac{1}{2016}+\frac{1}{2015}+...+1\ne0\)
\(\Rightarrow x-2017=0\)
\(\Rightarrow x=2017\)
<=> \(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+....+\frac{x-2016}{1}-2016=0\)\(=0\)
<=> \(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)+...+\left(\frac{x-2016}{1}-1\right)=0\)
<=> \(\frac{x-2017}{2016}+\frac{x-2017}{2015}+...+\frac{x-2017}{1}=0\)
<=> \(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}\right)=0\)
<=> \(x-2017=0\)\(\left(do\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}>0\right)\)
<=> \(x=2017\)
Vậy x = 2017
đúng thì
a/ Điều kiện xác định \(\hept{\begin{cases}a^2+a\ne0\\a^2-a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne0\\a\ne1\\a\ne-1\end{cases}}}\)
b/ \(M=\frac{a^2-1}{2016+2015a^2}\left(\frac{2015a-2016}{a+a^2}+\frac{2016+2015a}{a^2-a}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}.\frac{2\left(2015a^2+2016\right)}{a\left(a+1\right)\left(a-1\right)}\)
\(=\frac{2}{a}=\frac{2}{2016}=\frac{1}{1008}\)
Thay \(2016=xyz\)vào biểu thức ta được
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+z+1}{xz+z+1}=1\)
Vậy \(A=1\)
Vì \(xyz=2016\)
\(\Rightarrow A=\frac{2016x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)
\(=\frac{xyz.x}{xy+xyz.x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+1+z}{xz+z+1}=1\)