Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=6+52+53+54+...+51996+51997
A = 1 + 5 + 52 + 53 + ... + 51996 + 51997
5A = 5 + 52 + 53 + 54 + ... + 51997 + 51998
5A - A = ( 5 + 52 + 53 + 54 + ... + 51997 + 51998 ) - ( 1 + 5 + 52 + 53 + ... + 51996 + 51997 )
4A = 51998 - 1
\(\Rightarrow A=\frac{5^{1998}-1}{4}\)
\(A=6+5^2+5^3+...+5^{1996}+5^{1997}\\ A=1+5+5^2+5^3+...+5^{1996}+5^{1997}\)
\(5A=5+5^2+5^3+...+5^{1996}+5^{1998}\)
\(5A-A=\left(5+5^2+5^3+...+5^{1996}+5^{1998}\right)-\left(1+5+5^2+5^3+...+5^{1996}+5^{1997}\right)\)
\(4A=5^{1998}-1\\ A=\frac{5^{1998}-1}{4}\)
Ta có: \(A=6+5^2+5^3+5^4+...+5^{1996}+5^{1997}=1+5+5^2+5^3+...+1^{1997}\)
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{1997}+5^{1998}\)
\(\Rightarrow5A-A=\left(5+5^2+5^3+5^4+...+5^{1997}+5^{1998}\right)-\left(1+5+5^2+5^3+...+5^{1996}+5^{1997}\right)\)
\(\Rightarrow4A=5^{1998}-1\Rightarrow A=\dfrac{5^{1998}-1}{4}\)
Vậy ...
Ta có: A = 6 + 52 + 53 + 54 + ... + 51996 + 51997
A = 1 + 5 + 52 + 53 + ... + 51996 + 51997
5A = 5(1 + 5 + 52 + 53 + ... + 51996 + 51997)
5A = 5 + 52 + 53 + 54 + ... + 51997 + 51998
5A - A = (5 + 52 + 53 + 54 + ... + 51997 + 51998) - (1 + 5 + 52 + 53 + ... + 51996 + 51997)
4A = 51998 - 1
A = \(\frac{5^{1998}-1}{4}\)
A= 6 + 52+ 53+ 54 + ..... + 5 1996+ 51997
=>5A=5+52+53+54+...+51997+51998
=5A-A=(5+52+53+54+...51997+51998)-(1+5+52+53+...+51996+51997)
=4A=51998-1=>A=\(\frac{5^{1998}-1}{4}\)
Vậy ...
hc tốt
a:
7/15;8/15;5/10;9/20;9/20
b:
3990/3993;5985/5989;5985/5990;7980/7985;7980/7986
A\(=4^5+5.4^4-5.4^3-5.4^2+5.4-1\)
\(=1024+1280-320-80+20-1\)\(=1923\)
A= 1+5+52+53+54+...+51996+51997=\(\left(5-1\right).\left(1+5+5^2+5^3+...+5^{1997}\right).\frac{1}{4}\)
\(=\left(5^{1998}-1\right)\frac{1}{4}\)