Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
\(ab\left(x-y\right)^3-8ab=ab\left[\left(x-y\right)^3-2^3\right]=ab\left(x-y-2\right)\left[\left(x-y\right)^2+2\left(x-y\right)+4\right]\)
\(36x^2-y^2+6y-9=36x^2-\left(y-3\right)^2=\left(6x-y+3\right)\left(6x+y-3\right)\)
\(8x^2+10x-3=0\)
\(8x^2-2x+12x-3=0\)
\(2x\left(4x-1\right)+3\left(4x-1\right)=0\)
\(\left(4x-1\right)\left(2x+3\right)=0\)
\(\left[\begin{array}{nghiempt}4x-1=0\\2x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}4x=1\\2x=-3\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{4}\\x=-\frac{3}{2}\end{array}\right.\)
\(\left(2x-5\right)^2-\left(x+4\right)^2=0\)
\(\left(2x-5+x+4\right)\left(2x-5-x-4\right)=0\)
\(\left(3x-1\right)\left(x-9\right)=0\)
\(\left[\begin{array}{nghiempt}3x-1=0\\x-9=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=9\end{array}\right.\)
a) \(A=x^2-4y^2+x-2y\)
\(=\left(x-2y\right)\left(x+2y\right)+\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y+1\right)\)
Thay vào
b) tương tự
Tại x=1 ; y=2 thay vào BT ta có
A= \(1-4.2^2+1-2.2=\)-18
ý b) cũng thay v thoy
a) y3 + 12y2 + 48y + 64
= (y + 4)(y2 - 4y + 16) + 12y(y + 4)
= (y + 4)(y2 - 4y + 16 + 12y)
= (y + 4)(y2 + 8y + 16)
= (y + 4)(y + 4)2
= (y + 4)3
b) y3 - 6y2 + 12y - 8
= (y - 2)(y2 + 2y + 4) - 6y(y - 2)
= (y - 2)(y2 + 2y + 4 - 6y)
= (y - 2)(y2 - 4y + 4)
= (y - 2)(y - 2)2
= (y - 2)3
a; y^3 + 12y^2 + 48y + 46
= y^3 + 3 . 4 . y^2 + 3 . 16 . y + 64 - 18
= ( y + 8 )^3 - 18
= ( 6 + 8)^3 - 18
= 14^3 - 18
Cái 46 phải là 64 thì phải
b, = ( y - 2)^3 = ( 22 - 2 )^3 = 20^3 = 8000
A=6+52+53+54+...+51996+51997
A = 1 + 5 + 52 + 53 + ... + 51996 + 51997
5A = 5 + 52 + 53 + 54 + ... + 51997 + 51998
5A - A = ( 5 + 52 + 53 + 54 + ... + 51997 + 51998 ) - ( 1 + 5 + 52 + 53 + ... + 51996 + 51997 )
4A = 51998 - 1
\(\Rightarrow A=\frac{5^{1998}-1}{4}\)
\(A=6+5^2+5^3+...+5^{1996}+5^{1997}\\ A=1+5+5^2+5^3+...+5^{1996}+5^{1997}\)
\(5A=5+5^2+5^3+...+5^{1996}+5^{1998}\)
\(5A-A=\left(5+5^2+5^3+...+5^{1996}+5^{1998}\right)-\left(1+5+5^2+5^3+...+5^{1996}+5^{1997}\right)\)
\(4A=5^{1998}-1\\ A=\frac{5^{1998}-1}{4}\)