K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

  A = 1 − 1 1.2 + 1 − 1 2.3 + ... + 1 − 1 2015.2016         = 1 + 1 + 1 + ...1 − 1 1.2 + 1 2.3 + ... + 1 2015.2016         = 2015 − 1 − 1 2 + 1 2 − 1 3 + 1 3 − 1 4 + ... + 1 2015 − 1 2016         = 2015 − 1 − 1 2016         = 2015 − 1 + 1 2016         = 2014 + 1 2016         = 4060225 2016

21 tháng 2 2023

Trước tiên, chúng ta cần có lý thuyết về biến đổi phân số.

\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)

Ta có:

\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

\(S=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...-\dfrac{1}{2018}\)

\(S=1-\dfrac{1}{2018}\)

\(S=\dfrac{2017}{2018}\)

21 tháng 2 2023

=1/1.2+1/2.3+1/3.4+...1/2017.2018

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018

=1-1/2018

=2018/2018-1/2018

=2017/2018

1 tháng 8 2018

\(=\frac{0}{1.2}+\frac{0}{2.3}+\frac{0}{3.4}+...+\frac{0}{2015.2016}\)

\(=0+0+0+...+0=0\)

2 tháng 8 2017

Ta có công thức :

\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}=\frac{n-1}{n}\)

2 tháng 8 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\)

31 tháng 12 2017

\(\frac{1}{1.2}\)\(+\frac{1}{2.3}+\)\(\frac{1}{3.4}\)\(+\)\(.............+\)\(\frac{1}{2017.2018}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(=\frac{1}{1}-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

31 tháng 12 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}\)

 \(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{2018-2017}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

29 tháng 5 2018

a) Thay m = -1 và n = 2 ta có:

3m - 2n = 3(-1) -2.2 = -3 - 4 = -7

b) Thay m = -1 và n = 2 ta được 

7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.


 

11 tháng 9 2021

Lấy m ở đâu ra vậy?

8 tháng 10 2019

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 

3A = 1.2.( 3 + 0 ) + 2.3.( 4 - 1 ) + .. + 99.100.( 101 - 98 ) 

3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100 

3A = 99.100.101 

A = ( 99.100.101 ) : 3 = 333300 

Vậy A = 333300

8 tháng 10 2019

mk làm câu b

A=1.2+2.3+3.4+.......+99.100

3.A =3.1.2+2.3.3+3.4.3+............+99.100.3

3.A= 1.2.3+2.3.(4-1)+3.4.(5-2) +..........+99.100.(101-98)

3.A=1.2.3+2.3.4-1.2.3 +3.4.5-2.3.4+............+99.100.101-98.99.100

vì cứ +2.3.4  lại -2.3.4 cứ như thế

3.A=99.100.101

A=(99.100.101):3

A=333300

chúc bạn may mắn trong học tập 

mk vừa học xong

3 tháng 10 2021

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)

3 tháng 10 2021

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ A=1-\dfrac{1}{100}=\dfrac{99}{100}\)

25 tháng 12 2016

Hỏi thật không