\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Ta có công thức :

\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}=\frac{n-1}{n}\)

2 tháng 8 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\)

25 tháng 12 2016

Hỏi thật không

31 tháng 12 2017

\(\frac{1}{1.2}\)\(+\frac{1}{2.3}+\)\(\frac{1}{3.4}\)\(+\)\(.............+\)\(\frac{1}{2017.2018}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(=\frac{1}{1}-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

31 tháng 12 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}\)

 \(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{2018-2017}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

3 tháng 1 2017

=>\(-B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2012}\right)\)

=\(\frac{1}{2}.\frac{2}{3}...\frac{2011}{2012}=\frac{1}{2012}\)

17 tháng 6 2015

Ta có:  \(1-\frac{2}{n.\left(n+1\right)}\)

          =\(\frac{n.\left(n+1\right)-2}{n\left(n+1\right)}\)

          =\(\frac{n^2+n-2}{n.\left(n+1\right)}\) 

          =\(\frac{\left(n^2-1\right)+\left(n-1\right)}{n.\left(n+1\right)}\)

          =\(\frac{\left(n-1\right).\left(n+1\right)+\left(n-1\right)}{n.\left(n+1\right)}\) 

          =\(\frac{\left(n-1\right).\left(n+1+1\right)}{n.\left(n+1\right)}\)

          =\(\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\)

=>\(1-\frac{2}{n.\left(n+1\right)}=\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\left(1\right)\)

Lại có: \(M=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)....\left(1-\frac{2}{99.100}\right)\)

=>      \(M=\left(1-\frac{2}{2.\left(2+1\right)}\right).\left(1-\frac{2}{3.\left(3+1\right)}\right).\left(1-\frac{2}{4.\left(4+1\right)}\right)....\left(1-\frac{2}{99.\left(99+1\right)}\right)\left(2\right)\)

Thay (1) vào (2) ta được:

         \(M=\frac{\left(2-1\right).\left(2+2\right)}{2.\left(2+1\right)}.\frac{\left(3-1\right).\left(3+2\right)}{3.\left(3+1\right)}.\frac{\left(4-1\right).\left(4+2\right)}{4.\left(4+1\right)}...\frac{\left(99-1\right).\left(99+2\right)}{99.\left(99+1\right)}\)

=>     \(M=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{98.101}{99.100}\)

=>     \(M=\frac{1.4.2.5.3.6....98.101}{2.3.3.4.4.5....99.100}\)

=>     \(M=\frac{\left(1.2.3....98\right).\left(4.5.6....101\right)}{\left(2.3.4....99\right).\left(3.4.5....100\right)}\)

=>     \(M=\frac{1.101}{99.3}\)

=> \(M=\frac{101}{297}\)

Vậy \(M=\frac{101}{297}\)

4 tháng 10 2016

S=-(1-1/2+1/2-1/3+1/3-1/4+....+1/(n-1)-1/n)=-(1-1/n)=1/n-1

5 tháng 10 2016
Co dung k b
23 tháng 11 2018

\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)

\(\Rightarrow F=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(\Rightarrow F=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\left(đpcm\right)\)

\(H=2+4+6+...+2n\)

14 tháng 7 2018

=1-1/2+1/2-1/3+1/3-1/4+.....+1/n-1/n+1

=1-1/n+1

=n/n+1

14 tháng 7 2018

Ta có : 1/ 1.2 + 1/ 2.3 + 1/ 3.4 + ... + 1/ n.( n + 1 ) .

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/n - 1/ n+1 .

= 1 - 1/ n + 1 .

= n+1 / n+1 - 1/ n+1 .

= n/ n+1 .

Đáp sô : n/ n+1

Thay n = a nha / lúc trước có giải r nên ko giải lại rắc rối

A = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/n(n + 1),Toán há»c Lá»p 8,bài tập Toán há»c Lá»p 8,giải bài tập Toán há»c Lá»p 8,Toán há»c,Lá»p 8

31 tháng 8 2019

\(N=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{a\left(a+1\right)}\)

\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{a}-\frac{1}{a-1}\)

\(\Rightarrow N=1-\frac{1}{a-1}\)

\(\Rightarrow N=\frac{a-1-1}{a-1}\)

\(\Rightarrow N=\frac{a-2}{a-1}\)